Skip to content

Posts from the ‘SaaS’ Category

The Best Machine Learning Startups To Work For In 2020 Based On Glassdoor

The Best Machine Learning Startups To Work For In 2020 Based On Glassdoor

  • Duolingo, HOVER, Ironclad, Orbital Insight, People.ai, Dataiku, DeepMap, Cobalt, Aktana, Chorus.ai, Noodle Analytics, Inc. (Noodle.ai), Signal AI, Augury, SparkCognition, and KONUX are the most likely to be recommended by their employees to friends looking for a machine learning startup to work for in 2020.
  • 96% of the employees of the 15 highest rated machine learning startups would recommend their company to a friend looking for a new job, and 98% approve of their CEOs.
  • Across all machine learning startups with Glassdoor ratings, 74% of employees would recommend the startup they work for to a friend, and 81% approve of their CEO.
  • There are over 230 cities globally who have one or more machine learning startups in operation today with Crunchbase finding 144 in San Francisco, 60 in London, 69 in New York, 82 in Tel Aviv, 22 in Toronto, 20 in Paris, 18 in Seattle and the remainder distributed over 223 global locations.

These and many other insights are from a Crunchbase Pro analysis completed today using Glassdoor data to rank the best machine learning startups to work for in 2020. Demand reminds high for technical professionals with machine learning expertise.  According to Indeed, Machine Learning Engineer job openings grew 344% between 2015 to 2018 and have an average base salary of $146,085 according to their  Best Jobs In The U.S. Study. You can read the study shows that technical professionals with machine learning expertise are in an excellent position to bargain for the average base salary of at least $146,085 or more.

Methodology

In response to readers’ most common requests of which machine learning startups are the best to work for, a Crunchbase Pro query was created to find all machine learning startups who had received Seed, Early Stage Venture, or Late Stage Venture financing. The 2,682 machine learning startups Crunchbase is tracking were indexed by Total Funding Amount by startup to create a baseline.

Next, Glassdoor scores of the (%) of employees who would recommend this company to a friend and (%) of employees who approve of the CEO were used to find the best startups to work for. 79 of the 150 machine learning startups have 15 or more Glassdoor reviews and are included in the analysis. 41 have less than 15 reviews and 30 have no reviews. The table below is a result of the analysis, and you can find the original Microsoft Excel data set here.

The Best Machine Learning Startups To Work For In 2020 Based On Glassdoor

 

 

10 Ways AI Is Going To Improve Fintech In 2020

Bottom Line: AI & machine learning will improve Fintech in 2020 by increasing the accuracy and personalization of payment, lending, and insurance services while also helping to discover new borrower pools.

Zest.ai’s 2020 Predictions For AI In Credit And Lending captures the gradual improvements I’ve also been seeing across Fintech, especially at the tech stack level. Fintech startups, enterprise software providers, and the investors backing them believe cloud-based payments, lending, and insurance apps are must-haves to drive future growth. Combined with Internet & public cloud infrastructure and mobile apps, Fintech is evolving into a fourth platform that provides embedded financial services to any business needing to subscribe to them, as Matt Harris of Bain Capital Ventures writes in Fintech: The Fourth Platform – Part Two. Embedded Fintech has the potential to deliver $3.6 trillion in market value, according to Bain’s estimates, surpassing the $3 trillion in value created by cloud and mobile platforms. Accenture’s recent survey of C-suite executives’ adoption and plans found that 84% of all executives believe they won’t achieve their growth objectives unless they scale AI, and 75% believe they risk going out of business in 5 years if they don’t. The need to improve payment, lending and insurance combined with customers’ mercurial preferences for how they use financial services are challenges that AI and machine learning (ML) are solving today.

How AI & Machine Learning Will Improve Fintech In 2020

Fintech’s traditional tech stacks weren’t designed to anticipate and act quickly on real-time market indicators and data; they are optimized for transaction speed and scale. What’s needed is a new tech stack that can flex and adapt to changing market and customer requirements in real-time. AI & machine learning are proving to be very effective at interpreting and recommending actions based on real-time data streams. They’re also improving customer experiences and reducing risk, two additional factors motivating lenders to upgrade their traditional tech stacks with proven new technologies.

The following are ten predictions of how AI will improve FinTech in 2020, thank you Zest.ai for your insights and sharing your team’s expertise on these:

  1. Zest predicts lenders will increase the use of ML as the way to grow into the no-file/thin-file segments, especially rising Gen Zers with little to no credit history. Traditional tech stacks make it difficult to find and grow new borrower pools. Utah-based auto lenderPrestige Financial Services chose to rely on an AI solution instead. The chose Zest AI to find and cultivate a borrower pool of people in the 19-35 age group. Using an AI-based loan approval workflow, Prestige was able to increase loan approval rates by 25%, and for people under 20 by threefold.
  2. Mortgage lenders’ adoption of AI for finding qualified first-time homeowners is going to increase as more realize Gen Z (23 – 36-year-olds) are the most motivated of all to purchase a home. In 2020, long-standing assumptions about first-time homebuyers and their motivations are going to change. A recent story in HousingWire, “This generation is the most willing to do whatever it takes to buy a home,” explains that Gen Z, or those people born between 1996 and 2010, are the most likely to relocate to purchase a new home. A recent TransUnion market analysis found 70% of Gen Z prospective home buyers are willing to relocate to buy their first home, leading all active generations. 65% of Gen Xers, or those born between 1965 to 1980, were the second most likely to move. AI and ML can help lenders more precisely target potential Gen Z first-time homebuyers, measuring the impact of their marketing campaigns on attracting new borrowers. The TransUnion market analysis finds that 58% of respondents are delaying a home purchase due to anticipated high down payments or monthly payments. 51% said the need to obtain a 10% to 20% down payment was stopping them. According to Joe Mellman, TransUnion senior vice president, and mortgage business leader, “Many of our potential first-time homebuyer respondents don’t seem to be aware of the wide variety of financing options available to them.” The TransUnion market analysis found that many of the potential first-time homeowner respondents have never heard of low down-payment options from Fannie Mae, Freddie Mac, or of the Federal Housing Administration.
  3. Zest predicts banks and other financial institutions will strengthen their business cases for AI pilots and production-level deployments by recognizing the operating expense (OPEX) savings of ML. Several recurring costs involved in developing, validating and deploying credit risk models can be reduced or cut by switching to machine learning, according to Zest. Lenders can get the most out of their data acquisition spending by using modern ML tools to assess which data sources yield the most predictive power for a model. Lenders will also switch to ML to simplify their IT and risk operations by consolidating into fewer models that can do the work of what used to be multiple individual linear models for every customer segment.
  4. Compliance cost growth will decline even faster due to ML. Financial institutions that have AI/ML algorithms in production log every change in a model and can produce all the required model risk governance documents in minutes instead of a compliance team manually taking weeks to do it. Automated tools also shrink the time it takes to do fair lending testing by building less discriminatory models on the fly rather than the time-intensive approach of drop-one-variable-and-test. Time is money, especially in lending.
  5. AI and ML will gain critical mass in collections, providing insights into which approach is the most effective for a given customer. Zest has built collections models for a few financial services firms and has found them to be very effective. Collections logic, predicting which customers to wait on when bills are past due, is a strong fit for machine learning. With one bank, Zest found that ML models can, for example, accurately target the borrowers most likely to make a certain minimum payment based on the value of their loan within 60 days of falling behind their due date. In three months, Zest built two models from traditional credit bureaus and the bank’s proprietary collections metrics to predict this repayment propensity of borrowers. One insight into the data was that borrower behavior accounted for just over half of the bank’s ability to collect missed payments, but operations played a significant role.
  6. If there’s a downturn, ML will get blamed (even though it can actually help in a downturn). Pankaj Kulshreshtha, CEO of Scienaptics, originally made this observation at the Money 20/20 Conference held earlier this year. Models built only in good times can see their correlations break when times go bad. Lenders who observe best practices in AI and ML adoption will make sure to stress-test their models, perhaps by including synthetic data to add heterogeneity. Better ML monitoring will be important, too. “ML models and algorithmic monitors can do a better job seeing around corners, spotting rising numbers of inbound outlier applicants that signal more volatile conditions ahead,” says Seth Silverstein, Executive Vice President of Credit Risk Analytics for Zest AI.  An effective ML monitoring tool should excel at spotting outlier applicants and feature drift, ensuring more accurate model outcomes.
  7. 2020 is going to be a break-out year for partnerships and co-opetition as payments, lending and insurance firms vie for a growth position in embedded financial services. Matt Harris of Bain Capital Ventures’ prediction of embedded fintech suggests a proliferation of cloud-based Fintech apps around the core: payments, lending, insurance. That creates an ideal situation for AI-related alliances and partnerships among the incumbent lenders, startups, data aggregators and the CRAs. To Harris, the layers of the stack are centered around connectivity, intelligence, and ubiquity. According to Crunchbase, there have been 51 Fintech acquisitions in 2019 alone. Plaid’s acquisition of Quovo in January for approximately $200 million and Fiserv’s acquisition of First Data reflect how Fintechs are creating their own unique tech stacks already.
  8.  Zest predicts Fintechs will seek out AI and ML modeling expertise more so than build expertise and teams on their own, which will be costlier and take longer. Embedded Fintech’s future adoption rate is predicated on how effective development efforts are today at minimizing incidental bias and providing customers with greater visibility into how and why models provide specific results “Some of these startups are bringing their own data science and ML models. We have to hope these firms own, build, or buy the tools to ensure their models are inclusive, free of incidental bias, and use transparent AI customers can trust. We see explainable AI as being an essential feature or service in that tech stack,” says Zest’s Silverstein.
  9.  Fintechs will rely on AI and ML to help close the talent gap each of them has today while also improving the effectiveness of their talent management strategies. Finding, recruiting, and hiring the best candidates for development, engineering, marketing, sales, and senior management roles is an area Fintechs will increasingly adopt AI and ML for in 2020. Fintech CEOs and CHROs will begin upskilling programs for themselves and their teams to increase AI fluency and skills mastery in 2020. According to a recent Harris Interactive survey completed in collaboration with Eightfold titled Talent Intelligence And Management Report 2019-2020, 73% of U.S. CEOs and CHROs plan to use more AI in the next three years to improve talent management.
  10. Credit unions will adopt ML in 2020 to automate routine tasks and free up human underwriters to focus on providing more personalized services, including improvements in inquiry resolution & dispute and fraud management. Credit unions are built on an annuity-based business model that delivers successively higher profitability the longer a member is retained. Credit unions will capitalize on ML by driving up loan approvals with no added risk and automating more of the loan approval process. By the end of 2020, according to a Fannie Mae survey of mortgage lenders, 71% of credit unions plan to investigate, test, or fully implement AI/ML solutions – up from just 40% in 2018. AI and ML will also be adopted across credit unions to improve inquiry resolution & dispute and fraud management while improving multichannel customer experiences. Providing real-time, relevant responses to customers to expedite inquiries and dispute resolutions using AI and ML is going to become commonplace in 2020. AI and ML are predicted to make a significant contribution to automating anomaly detection and borrower default risk assessment as the graphic below from Fannie Mae’s Mortgage Lender Sentiment Survey® How Will Artificial Intelligence Shape Mortgage Lending? Q3 2018 Topic Analysis illustrates:

 

 

Top 25 AI Startups Who Raised The Most Money In 2019

Top 25 AI Startups Who Raised The Most Money In 2019

  • $10.7B was invested in AI startups this year in their seed, early-stage venture, or late-stage venture funding rounds.
  •  Over half, or 57.9% of all AI startup financing rounds where either seed or pre-seed, 21.2% are Series A, 11.8% are Series B, and all others comprise 9% of all funding rounds.
  • The median AI startup funding round generated $4M with the average being $14.6M and the maximum, $319M, obtained by Vacasa.

These and many other fascinating insights are from an analysis of AI startups’ funding rounds in 2019 using Crunchbase Pro research. AI startups who have had seed, early-stage venture or late-stage venture funding since December 31, 2018, and are U.S.-based are included in the analysis which is provided here. Crunchbase Pro found 499 startups meeting the search criteria as of today.

Top 25 AI Startups Who Have Raised The Most Money In 2019

  1. Vacasa – Raised $319M from a Series C round on October 29th, Vacasa is creating and using AI-driven tools to improve their customers’ experiences renting vacation homes around the world. Their AI strategies include improving every aspect of the customer’s lifecycle from pricing through scheduling post-stay cleans. The company manages a growing portfolio of more than 14,000 vacation homes in the U.S, Europe, Central, and South America, and South Africa.
  2. Samsara – Raised $300M from a Series F round on September 10th. Samsara is an IoT platform combining hardware, software, and cloud to bring real-time visibility, analytics, and AI to operations. Samsara’s portfolio of Internet of Things (IoT) solutions combine hardware, software, and cloud to bring real-time visibility, analytics, and AI to operations. Their core strengths include vehicle telematics, driver safety, mobile workflow and compliance, asset tracking, and industrial process controls all in an integrated, open, real-time platform.
  3. TripActions – Raised $250M from a Series D round on June 27th. TripActions is a business travel platform that combines the latest AI-driven personalization with inventory and 24×7 365 live human support to serve employees, finance leaders, and travel managers alike all while empowering organizations to seize travel as a strategic lever for growth.
  4. ThoughtSpot – Raised $248M from a Series E round on August 22nd. ThoughtSpot’s AI-Driven analytics platform enables business analyst to capitalize on the expertise and shared knowledge of experienced data scientists. With ThoughtSpot, business analysts can analyze data or automatically get trusted insights pushed to you with a single click. ThoughtSpot connects with any on-premise, cloud, big data, or desktop data source. Business Intelligence and Analytics teams have used ThoughtSpot to cut reporting backlogs by more than 90% and make more than 3 million decisions and counting.
  5. CloudMinds – Raised $186M from a Series B round on February 23rd. Founded in 2015, CloudMinds’ unique Cloud Robot Service Platform consists of Human Augmented Robotics Intelligence with Extreme Reality (HARIX), a Secure virtual backbone network (VBN over 4G/5G), and Robot Control Unit (RCU). Designed by CloudMinds, XR-1 Robot is the first commercial humanoid service robot powered by our Smart Compliant Actuator (SCA) technology with precise and compliant grasping capability. Their AI Cloud Brain platform (HARIX) is designed to enable robotic intelligence through a secured network over 4G/5G. CloudMinds is focused on several core technologies, including Smart Vision, Smart Voice, Smart Motion and Human Augmentation. The following is an overview of their architecture:

Top 25 AI Startups Who Raised The Most Money In 2019

  1. Icertis – Raised $115M from a Series E round on July 17th. Icertis is an enterprise contract management platform in the cloud that solves contract management problems using AI. Using advanced algorithms, Icertis helps its customers accelerate business cycles by increasing contract velocity, protecting against risk by ensuring regulatory and policy compliance and optimizing the commercial relationships by maximizing revenue and reducing costs. 3M, Airbus, Cognizant, Daimler, Microsoft, and Roche who rely on Icertis to manage 5.7 million contracts in 40+ languages across 90+ countries, are all customers. The following is an overview of the Icertis Contract Management Platform:

Top 25 AI Startups Who Raised The Most Money In 2019

  1. SparkCognition – Raised $100M from a Series C round on October 8th. SparkCognition builds artificial intelligence systems focused on the needs of its customers in the aviation, cybersecurity, defense, Financial Services, manufacturing, maritime, and Utilities industries. SparkCognition offers four main products: DarwinTM, DeepArmor, SparkPredict, and DeepNLPTM. One of their most noteworthy products is DeepArmor, an AI-powered endpoint security solution that has trained on millions of malicious and benign files and provides industry-leading protection against a broad spectrum of threats. With millions of new malware variants showing up each month, DeepArmor uses AI to assess risk levels and thwart malware and break attempts. DeepArmor’s dashboard is shown below:

Top 25 AI Startups Who Raised The Most Money In 2019

  1. Vectra AI – Raised $100M from a Series E round on June 10th. Vectra specializes in network detection and response – from cloud and data center workloads to user and IoT devices. Its Cognito platform accelerates threat detection and investigation using artificial intelligence to collect, store, and enrich network metadata with the right context to detect, hunt and investigate known and unknown threats in real-time.
  2. Globality – Raised $100M from a Series D round on January 22nd. The January round enabled Globality to accelerate its growth through investment in its AI technology, increasing business capacity by hiring additional members of its engineering, product, and client teams, and expanding its Marketing and Sales programs. Through its AI-powered Platform, Globality is automating the procurement of B2B services and improving the RFP process. Globality efficiently matches companies with service providers that meet their specific needs, cutting the sourcing process from months to hours, and delivering savings of 20% or more for companies.
  3. Black Sesame Technologies – Raised $100M from a Series B round on April 12th.  Black Sesame Technologies is an AI digital imaging technology firm provides solutions for image processing and computing images, as well as embedded sensing platforms. The firm specializes in algorithms for smartphones, autonomous driving, and other consumer electronics. Its R & D teams are actively working on core algorithm development, ASIC design, software system, and ADAS engineering applications.
  4. Scale – Raised $100M from a Series C round on August 5th. Scale accelerates the development of AI applications by helping computer vision teams generate high-quality ground truth data. Our advanced LiDAR, video, and image annotation APIs allow self-driving, drone, and robotics teams at companies like Waymo, OpenAI, Lyft, Zoox, Pinterest, and Airbnb focus on building differentiated models vs. labeling data. Scale’s greatest strength is its API for training data, providing access to human-powered data for a multitude of use cases.
  5. AutoX – Raised $100M from a Series A round on September 16th. AutoX is a self-driving car startup that uses AI to fine-tune Location-Based Services with camera-first autonomous driving technology. In July of this year, AutoX announced a partnership with NEVS, the Swedish holding company, and electric vehicle manufacturer that bought Saab’s assets out of bankruptcy, to deploy a robotaxi pilot service in Europe by the end of 2020.
  6. DISCO – Raised $83M from a Series E round on January 24th. DISCO is a legal technology company that applies artificial intelligence and cloud computing to legal problems to help lawyers and legal teams improve legal outcomes for clients. Corporate legal departments, law firms, and government agencies around the world use DISCO as an ediscovery solution for compliance, disputes, and investigations. The company is looking to reinvent legal technology to automate and simplify complex and error-prone tasks that distract from practicing law.
  7. QOMPLX – Raised $78.6M from a Series A round on July 23rd. QOMPLX makes it faster and easier for organizations to integrate disparate internal and external data sources across the enterprise via a unified analytics infrastructure that supports better decision-making using AI at scale. This enterprise data-fabric is called QOMPLX OS: an enterprise operating system that powers QOMPLX’s decision platforms in cybersecurity, insurance, and quantitative finance. The following is an example of how the QOMPLX OS automates data management while providing greater contextual intelligence to data:

Top 25 AI Startups Who Raised The Most Money In 2019

  1. Galileo Financial Technologies – Raised $77M from a Series A round on October 17th. Galileo’s APIs are used widely throughout the neobank, payments, gig economy, investing and SaaS market segments. As of September 2019, Galileo was managing over $26B in annual payments volume, a 130% increase over September 2018. Galileo’s latest round, a $77M investment led by venture capital firm Accel with participation from Qualtrics Co-Founder & CEO Ryan Smith. The company, which is already profitable and growing rapidly, plans to use the funds to accelerate growth, including expansion into Latin America, the UK, and Europe, and for continued product expansion.
  2. BlackThorn Therapeutics – Raised 76M from a Series B round on June 13th. BlackThorn Therapeutics, Inc., is a clinical-stage neurobehavioral health company pioneering the next generation of AI technologies to advance its pipeline of targeted therapeutics for treating brain disorders. The company has engineered PathFinder, a cloud-based computational psychiatry and data platform, to enable the collection, integration, and analysis of multimodal data at great speed and scale. BlackThorn applies its data-driven approaches to create an understanding of the core underlying pathophysiology of neurobehavioral disorders and uses these insights to generate objective neuromarkers, which support drug target identification, patient stratification, and objective clinical trial endpoints.
  3. Highspot – Raised $75M from a Series D round on December 3rd. Highspot is a sales enablement platform that relies on AI technologies to elevate and add value to companies’ conversations with their customers and drive strategic growth. The platform combines intelligent content management, training, contextual guidance, customer engagement, and actionable analytics. Revenue teams use Highspot to deliver a unified buying experience that increases revenue, customer satisfaction and retention. Highspot has attained a 90% average monthly recurring usage rate and has global support across 125 countries. It’s available on the Salesforce AppExchange, Microsoft Store, Google Play and Apple AppStore.
  4. Moveworks – Raised $75M from a Series B round on November 11th. Moveworks is a cloud-based AI platform designed for large enterprises’ IT support and service desk challenges. Instead of just tracking issues, Moveworks uses advanced AI to solve IT support and service problems automatically, often with no human intervention. Customers include AutoDesk, Broadcom, Nutanix and many other Fortune 500 companies. Moveworks is backed by Bain Capital Ventures and Lightspeed Venture Partners and is headquartered in Mountain View, California.
  5. Reonomy – Raised $60M from a Series D round on November 7th. Reonomy is an AI-powered data platform for the commercial real estate industry. The goal of the company’s platform is to leverage big data, partnerships, and machine learning to connect the fragmented world of commercial real estate. Reonomy products enable individuals, teams, and companies to unlock new insights from property intelligence. By constantly aggregating and organizing up-to-the-minute marketplace data, Reonomy offer investors and brokers the opportunity to research nuanced property characteristics that indicate the likelihood of a future sale. Below is an example of an analysis of the San Francisco neighborhood using AI-based filtering technology:

Top 25 AI Startups Who Raised The Most Money In 2019

  1. Clari – Raised $60M from a Series D round on October 10th. Clari is a connected revenue operations platform that uses automation and AI to unlock all the activity data captured in key business systems such as marketing automation, CRM, email, calendar, phone, content management, and conversations. It automatically aligns that data to accounts and opportunities to deliver visibility, forecasting, and apply predictive insights, which results in more insight, less guesswork, and more predictable revenue. Clari helps companies by changing their revenue operations to be more connected, efficient, and predictable. Clari’s platform is used by hundreds of sales, marketing, and customer success teams at B2B companies such as Qualtrics, Lenovo, Adobe, Dropbox, and Okta to control pipeline, audit deals and accounts, forecast the business, and reduce churn. The following is an example of a Clari dashboard:

Top 25 AI Startups Who Raised The Most Money In 2019

  1. People.ai – Raised $60M from a Series C round on May 21st. People.ai is an artificial intelligence (AI) platform for enterprise revenue. People.ai helps sales, marketing, and customer success teams uncover every revenue opportunity from every customer by capturing all customer contacts, activity, and engagement to drive actionable insights across all revenue teams. People.ai enables sales leaders to be more effective at managing their teams and growing revenue by giving them a complete picture of sales activities and leveraging AI to deliver sales performance analytics, personalized coaching, one-on-one feedback, and pipeline reviews. The People.ai platform identifies and targets the buying group, and gives marketers a clear visualization of whom sales have spoken with, and which campaign has been successful in each opportunity. Using this information, marketers are able to build personas and deal models in order to better target their marketing efforts and get better campaign ROI. Customer success and services teams use People.ai to ensure they are engaging with the right people when the customer is handed off to them, but more importantly, these post-sales teams are constantly looking to align their effort and activities with the right opportunities and customers, tracking the true cost to support each customer. The following graphic illustrates the People.ai platform automatically capture all contact and customer activity data, dynamically update your CRM, and provide actionable intelligence to realize the full potential of customer-facing teams. The following graphic illustrates the People.ai platform:

Top 25 AI Startups Who Raised The Most Money In 2019

 

  1. Invoca – Raised $56M from a Series C round on October 17th. Invoca is an AI-powered call tracking and analytics platform that helps marketers drive inbound calls and turn them into sales. The platform delivers real-time call analytics to help marketers take informed actions based on data generated before and during a phone conversation. It also allows marketers to understand, in real-time, the factors affecting consumers’ intent to buy, like competitive promotional campaigns. Marketers can put the data to work directly in the platform by automating customer experience workflows during, before, and after each call. Invoca’s platform integrates with Google Marketing Platform, Facebook, Adobe Experience Cloud, and Salesforce Sales and Marketing Clouds. Invoca’s investors include Accel Partners, H.I.G. Growth Partners, Upfront Ventures, Morgan Stanley Alternative Investment Partners, Salesforce Ventures, and Rincon Venture Partners. The following is an example of an Invoca dashboard used for measuring Google AdWords effectiveness:

Top 25 AI Startups Who Raised The Most Money In 2019

  1. Clinc – Raised $52M from a Series B round on May 20th.  Clinc is a conversational AI platform that enables enterprises to build “human-in-the-room” level, next-gen, virtual assistants. In contrast to a speech-to-text word matching algorithm, Clinc analyzes dozens of factors from the user’s input including wording, sentiment, intent, tone of voice, time of day, location, and relationships, and uses those factors to deliver an answer that represents a composite of knowledge extracted from its trained brain. Clinc’s underlying technology is based on state-of-the-art machine learning and deep neural networks (DNN)-as-a-service developed by computer science professors at the University of Michigan. Clinc is a standalone “trained brain” that has been given an initial deep knowledge of the financial and banking industry. Its machine learning capabilities enable it to expand its knowledge with every query and to then draw from that knowledge for each subsequent customer query.
  2. Biz2Credit – Raised $52M from a Series D round on June 4th. Biz2Credit is a hub connecting small business owners with lenders and service providers, and seek solutions based on their online profiles. Biz2X uses a streamlined user interface, AI-driven analytics, and a customizable white label environment to help banks enhance their core services such as offering focused customer service, growing their portfolio, and increasing the use of their products. With enhanced loan management, servicing, risk analytics and a configurable customer journey, Biz2X is helping banks like these run their lending operations at scale.
  3. Uniphore – Raised $51M from a Series C round on August 13th. Uniphore is a global Conversational AI technology company that offers a customer service platform that is powered by AI and automation technologies. The Company’s vision is to bridge the gap between people and machines through voice. Uniphore enables businesses globally to deliver transformational customer service by providing a platform of Conversational Analytics, Conversational Assistant, and Conversational Security that changes the way enterprises engage their consumers, build loyalty and realize efficiencies.

 

Why Cybersecurity Needs To Focus More On Customer Endpoints

Why Cybersecurity Needs To Focus More On Customer Endpoints

  • Cloud-based endpoint protection platforms (EPP) are proliferating across enterprises today as CIOs and CISOs prioritize greater resiliency in their endpoint security strategies going into 2020.
  • Gartner predicts that Global Information Security and Risk Management end-user spending is forecast to grow at a five-year CAGR of 9.2% to reach $174.5 billion in 2022, with approximately $50B spent on endpoint security.
  • Endpoint security tools are 24% of all IT security spending, and by 2020 global IT security spending will reach $128B according to Morgan Stanley Research.
  • 70% of all breaches still originate at endpoints, despite the increased IT spending on this threat surface, according to IDC.

There’s a surge of activity happening right now in enterprises that are prioritizing more resiliency in their endpoint security strategies going into 2020. The factors motivating CIOs, CISOs, IT, and Practice Directors to prioritize endpoint resiliency include more effective asset management based on real-time data while securing and ensuring every endpoint can heal itself using designed-in regenerative software at the BIOS level of every device. CIOs say the real-time monitoring helps reduce asset management operating expense, a big plus many of them appreciate give their tight budgets. Sean Maxwell, Chief Commercial Officer at Absolute, says, “Trust is at the center of every endpoint discussion today as CIOs, CISOs and their teams want the assurance every endpoint will be able to heal itself and keep functioning.”

The Endpoint Market Is Heating Up Going Into 2020

Over thirty vendors are competing in the endpoint security market right now. A few of the most interesting are Absolute Software, Microsoft, Palo Alto Networks, and others who are seeing a surge of activity from enterprises based on discussions with CIOs and CISOs. Absolute Software’s Persistence self-healing endpoint security technology is embedded in the firmware of more than 500 million devices and gives CIOs, CISOs and their team’s complete visibility and control over devices and data. Absolute is the leading visibility and control platform that provides enterprises with tamper-proof resilience and protection of all devices, data, and applications.

Like Absolute, Microsoft is unique in how they are the only vendor to provide built-in endpoint protection at the device level, with the core focus being on the OS. Windows 10 has Windows Defender Antivirus now integrated at the OS level, the same System Center Endpoint Protection delivers in Windows 7 and 8 OS. Microsoft Defender Advanced Threat Protection (ATP) incident response console aggregates alerts and incident response activities across Microsoft Defender ATP, Office 365 ATP, Azure ATP, and Active Directory, in addition to Azure.

Further evidence of how enterprise customers are placing a high priority on endpoint security is the increase in valuations of key providers in this market, including Absolute Software (TSE: ABT) and others. Absolute’s stock price has jumped 13% in just a month, following their latest earnings announcement on November 12th with a transcript of their earnings call here. Absolute’s CEO Christy Wyatt commented during the company’s most recent earnings call that, “The ability to utilize near real-time data from the endpoint to… to deliver actionable insights to IT about where controls are failing and the ability to apply resilience to self-heal and reinforce those security controls will become a critical skill for every one of our customers. This is the essence of Absolute’s platform, which adds resiliency to our customer’s operations.” It’s evident from what CIOs and CISOs are saying that resiliency is transforming endpoint security today and will accelerate in 2020.

Key Takeaways From Conversations With Enterprise Cybersecurity Leaders

The conversations with CIOs, CISOs, and IT Directors provided valuable insights into why resiliency is becoming a high priority for endpoint security strategies today. The following are key takeaways from the conversations:

  • Known humorously as the “fun button” cybersecurity teams enjoy being able to brick any device any time while monitoring the activity happening on it in real-time. One CIO told the story of how their laptops had been given to a service provider who was supposed to destroy them to stay in compliance with the Health Insurance Portability and Accountability Act (HIPAA), and one had been resold on the back market, ending up in a 3rd world nation. As the hacker attempted to rebuild the machine, the security team watched as each new image was loaded, at which time they would promptly brick the machine. After 19 tries, the hacker gave up and called the image re-build “brick me.”
  • IT budgets for 2020 are flat or slightly up, with many CIOs being given the goal of reducing asset management operating expenses, making resiliency ideal for better managing device costs. The more effectively assets are managed, the more secure an organization becomes. That’s another motivating factor motivating enterprises to adopt resiliency as a core part of the endpoint security strategies.
  • One CIO was adamant they had nine software agents on every endpoint, but Absolute’s Resilience platform found 16, saving the enterprise from potential security gaps. The gold image an enterprise IT team was using had inadvertently captured only a subset of the total number of software endpoints active on their networks. Absolute’s Resilience offering and Persistence technology enabled the CIO to discover gaps in endpoint security the team didn’t know existed before.
  • Endpoints enabled with Resiliency have proven their ability to autonomously self-heal themselves, earning the trust of CIOs and CISOs, who are adopting Absolute to alleviate costly network interruptions and potential breaches in the process. 19% of endpoints across a typical IT network require at least one client or patch management repair monthly, according to Absolute’s 2019 Endpoint Security Trends Report. The report also found that increasing security spending on protecting endpoints doesn’t increase an organizations’ safety – and in some instances, reduces it. Having a systematic, design-in solution to these challenges gives CIOs, CISO, and their teams greater peace of mind and reduces expensive interruptions and potential breaches that impede their organizations’ growth.

 

7 Signs It’s Time To Get Focused On Zero Trust

7 Signs It’s Time To Get Focused On Zero Trust

When an experienced hacker can gain access to a company’s accounting and financial systems in 7 minutes or less after obtaining privileged access credentials, according to Ponemon, it’s time to get focused on Zero Trust Security. 2019 is on its way to being a record year for ransomware attacks, which grew 118% in Q1 of this year alone, according to McAfee Labs Threat Report. Data breaches on healthcare providers reached an all-time high in July of this year driven by the demand for healthcare records that range in price from $250 to over $1,000 becoming best-sellers on the Dark Web. Cybercriminals are using AI, bots, machine learning, and social engineering techniques as part of sophisticated, well-orchestrated strategies to gain access to banking, financial services, healthcare systems, and many other industries’ systems today.

Enterprises Need Greater Urgency Around Zero Trust

The escalating severity of cyberattacks and their success rates are proving that traditional approaches to cybersecurity based on “trust but verify” aren’t working anymore. What’s needed is more of a Zero Trust-based approach to managing every aspect of cybersecurity. By definition, Zero Trust is predicated on a “never trust, always verify” approach to access, from inside or outside the network. Enterprises need to begin with a Zero Trust Privilege-based strategy that verifies who is requesting access, the context of the request, and the risk of the access environment.

How urgent is it for enterprises to adopt Zero Trust? A recent survey of 2,000 full-time UK workers, completed by Censuswide in collaboration with Centrify, provides seven signs it’s time for enterprises to get a greater sense of urgency regarding their Zero Trust frameworks and initiatives. The seven signs are as follows:

  1. 77% of organizations’ workers admit that they have never received any form of cybersecurity skills training from their employer. In this day and age, it’s mind-blowing that three of every four organizations aren’t providing at least basic cybersecurity training, whether they intend to adopt Zero Trust or not. It’s like freely handing out driver’s licenses to anyone who wants one so they can drive the freeways of Los Angeles or San Francisco. The greater the training, the safer the driver. Likewise, the greater the cybersecurity training, the safer the worker, company and customers they serve.
  2. 69% of employees doubt the cybersecurity processes in place in their organizations today. When the majority of employees don’t trust the security processes in place in an organization, they invent their own, often bringing their favorite security solutions into an enterprise. Shadow IT proliferates, productivity often slows down, and enterprise is more at risk of a breach than ever before. When there’s no governance or structure to managing data, cybercriminals flourish.
  3. 63% of British workers interviewed do not realize that unauthorized access to an email account without the owner’s permission is a criminal offense. It’s astounding that nearly two-thirds of the workers in an organization aren’t aware that unauthorized access to another person’s email account without their permission is a crime. The UK passed into law 30 years ago the Computer Misuse Act. The law was created to protect individuals’ and organizations’ electronic data. The Act makes it a crime to access or modify data stored on a computer without authorization to do so. The penalties are steep for anyone found guilty of gaining access to a computer without permission, starting with up to two years in prison and a £5,000 fine. It’s alarming how high the lack of awareness is of this law, and an urgent call to action to prioritize organization-wide cybersecurity training.
  4. 27% of workers use the same password for multiple accounts. The Consensus survey finds that workers are using identical passwords for their work systems, social media accounts, and both personal and professional e-mail accounts. Cybersecurity training can help reduce this practice, but Zero Trust is badly needed to protect privileged access credentials that may have identical passwords to someone’s Facebook account, for example.
  5. 14% of employees admitted to keeping their passwords recorded in an unsecured handwritten notebook or on their desk in the office.  Organizations need to make it as difficult as possible for bad actors and cybercriminals to gain access to passwords instead of sharing them in handwritten notebooks and on Post-It notes. Any organization with this problem needs to immediately adopt Multi-Factor Authentication (MFA) as an additional security measure to ensure compromised passwords don’t lead to unauthorized access. For privileged accounts, use a password vault, which can make handwritten password notes (and shared passwords altogether) obsolete.
  6. 14% do not use multi-factor authentication for apps or services unless forced to do so. Centrify also found that 58% of organizations do not use Multi-Factor Authentication (MFA) for privileged administrative access to servers, leaving their IT systems and infrastructure unsecured. Not securing privileged access credentials with MFA or, at the very least, vaulting them is like handing the keys to the kingdom to cybercriminals going after privileged account access. Securing privileged credentials needs to begin with a Zero Trust-based approach that verifies who is requesting access, the context of the request, and the risk of the access environment.
  7. 1 out of every 25 employees hacks into a colleague’s email account without permission. In the UK, this would be considered a violation of the Computer Misuse Act, which has some unfortunate outcomes for those found guilty of violating it. The Censuswide survey also found that one in 20 workers have logged into friend’s Facebook accounts without permission. If you work in an organization of over 1,000 people, for example, 40 people in your company have most likely hacked into a colleague’s email account, opening up your entire company to legal liability.

Conclusion

Leaving cybersecurity to chance and hoping employees will do the right thing isn’t a strategy; it’s an open invitation to get hacked. The Censuswide survey and many others like it reflect a fundamental truth that cybersecurity needs to become part of the muscle memory of any organization to be effective. As traditional IT network perimeters dissolve, enterprises need to replace “trust but verify” with a Zero Trust-based framework. Zero Trust Privilege mandates a “never trust, always verify, enforce least privilege” approach to privileged access, from inside or outside the network. Leaders in this area include Centrify, who combines password vaulting with brokering of identities, multi-factor authentication enforcement, and “just enough” privilege, all while securing remote access and monitoring of all privileged sessions.

10 Charts That Will Change Your Perspective Of AI In Security

10 Charts That Will Change Your Perspective Of AI In Security

Rapid advances in AI and machine learning are defining cybersecurity’s future daily. Identities are the new security perimeter and Zero Trust Security frameworks are capitalizing on AI’s insights to thwart breaches in milliseconds. Advances in AI and machine learning are also driving the transformation of endpoint security toward greater accuracy and contextually intelligence.

69% of enterprise executives believe artificial intelligence (AI) will be necessary to respond to cyberattacks with the majority of telecom companies (80%) saying they are counting on AI to help identify threats and thwart attacks according to Capgemini. Gartner predicts $137.4B will be spent on Information Security and Risk Management in 2019, increasing to $175.5B in 2023, reaching a CAGR of 9.1%. Cloud Security, Data Security, and Infrastructure Protection are the fastest-growing areas of security spending through 2023. The following ten charts illustrate the market and technological factors driving the rapid growth of AI in security today:

  • AI shows the greatest potential for fraud detection, malware detection, assigning risk scores to login attempts on networks, and intrusion detection. Supervised and unsupervised machine learning algorithms are proving to be effective in identifying potentially fraudulent online transaction activity. By definition, supervised machine learning algorithms rely on historical data to find patterns not discernible with traditional rule-based approaches to fraud detection. Finding anomalies, interrelationships, and valid links between emerging factors and variables is unsupervised machine learning’s core strength. Combining each is proving to be very effective in identifying anomalous behavior and reducing or restricting access. Kount’s  Omniscore relies on these technologies to provide an AI-driven transaction safety rating. Source: Capgemini Research Institute, Reinventing Cybersecurity with Artificial Intelligence – The new frontier in digital security (28 pp., PDF, no opt-in).
  • 80% of telecommunications executives stated that they believe their organization would not be able to respond to cyberattacks without AI. Across all seven industries studied in a recent Capgemini survey, 69% of all senior executives say they would not be able to respond to a cyberattack without AI. 75% of banking executives realize they’ll need AI to thwart a cyberattack. Interestingly, 59% of Utilities executives, the lowest response to this question on the survey, see AI as essential for battling a cyberattack. Utilities are one of the more vulnerable industries to attacks given their legacy infrastructure. Source: Statistica, Share of organizations that rely on artificial intelligence (AI) for cybersecurity in selected countries as of 2019, by industry
  • 51% of enterprises primarily rely on AI for threat detection, leading prediction, and response. Consistent with the majority of cybersecurity surveys of enterprises’ AI adoption for cybersecurity in 2019, AI is relied the majority of the time for detecting threats. A small percentage of enterprises have progressed past detection to prediction and response, as the graphic below shows. Many of the more interesting AI projects today are in prediction and response, given how the challenges in these areas expand the boundaries of technologies fast. Source: Capgemini Research Institute, Reinventing Cybersecurity with Artificial Intelligence – The new frontier in digital security (28 pp., PDF, no opt-in).
  • Enterprises are relying on AI as the foundation of their security automation frameworks. AI-driven security automation frameworks are designed to flex and support new digital business models across an organization. Existing security automation frameworks can crunch and correlate threat patterns on massive volumes of disparate data, which introduces opportunities for advanced cybersecurity without disrupting business. Using alerts and prescriptive analytics for dynamic policies to address identified risks, enterprises can speed deployment of threat-blocking measures, increasing the agility of security operations. Source: Cognizant, Combating Cybersecurity Challenges with Advanced Analytics (PDF, 24 pp., no opt-in).
  • Cybersecurity leads all other investment categories this year of TD Ameritrade’s Registered Investment Advisors (RIA) Survey. The survey found RIAs are most interested in investment opportunities for their clients in AI-based cybersecurity new ventures. Source: TD Ameritrade Institutional 2019 RIA Sentiment Survey (PDF, 35 pp., no opt-in)
  • 62% of enterprises have adopted and implemented AI to its full potential for cybersecurity, or are still exploring additional uses. AI is gaining adoption in U.S.-based enterprises and is also being recommended by government policy influencers. Just 21% of enterprises have no plans for using AI-based cybersecurity today.  Source: Oracle, Security In the Age Of AI (18 pp., PDF. no opt-in
  • 71% of today’s organizations reporting they spend more on AI and machine learning for cybersecurity than they did two years ago. 26% and 28% of U.S. and Japanese IT professionals believe their organizations could be doing more. Additionally, 84% of respondents believe cyber-criminals are also using AI and ML to launch their attacks. When considered together, these figures indicate a strong belief that AI/ML based cybersecurity is no longer simply nice to have; it’s crucial to stop modern cyberattacks.   Source: Webroot, Knowledge Gaps: AI and Machine Learning in CyberSecurity Perspectives from the U.S. and Japanese IT Professionals (PDF, 9 pp., no opt-in)
  • 73% of enterprises have adopted security products with some form of AI integrated into them. Among enterprises that receive more than 1,000 alerts per day, the percentage that has AI-enabled products in their security infrastructure jumps to 84%. The findings suggest that some decision makers view AI as useful capability in dealing with the flood of alerts that they receive. Source: Osterman Research, The State of AI in Cybersecurity: The Benefits, Limitations and Evolving Questions (PDF, 10 pp., opt-in).
  • AI’s greatest benefit is the increase in the speed of analyzing threats (69%) followed by an acceleration in the containment of infected endpoints/devices and hosts (64%). Because AI reduces the time to respond to cyber exploits organizations can potentially save an average of more than $2.5 million in operating costs. Source: The Value of Artificial Intelligence in Cybersecurity – Sponsored by IBM Security Independently conducted by Ponemon Institute LLC, July 2018.

5 Proven Ways Manufacturers Can Get Started With Analytics

5 Proven Ways Manufacturers Can Get Started With Analytics

Going into 2020, manufacturers are at an inflection point in their adoption of analytics and business intelligence (BI). Analytics applications and tools make it possible for them to gain greater insights from the massive amount of data they produce every day. And with manufacturing leading all industries on the planet when it comes to the amount of data generated from operations daily, the potential to improve shop floor productivity has never been more within reach for those adopting analytics and BI applications.

Analytics and BI Are High Priorities In Manufacturing Today

Increasing the yield rates and quality levels for each shop floor, machine and work center is a high priority for manufacturers today. Add to that the pressure to stay flexible and take on configure-to-order and engineer-to-order special products fulfilled through short-notice production runs and the need for more insight into how each phase of production can be improved. Gartner’s latest survey of heavy manufacturing CIOs in the 2019 CIO Agenda: Heavy Manufacturing, Industry Insights, by Dr. Marc Halpern. October 15, 2018 (Gartner subscription required) reflects the reality all manufacturers are dealing with today. I believe they’re in a tough situation with customers wanting short-notice production time while supply chains often needing to be redesigned to reduce or eliminate tariffs. They’re turning to analytics to gain the insights they need to take on these challenges and more. The graphic below is from Gartner’s latest survey of heavy manufacturing CIOs, it indicates the technology areas where heavy manufacturing CIOs’ organizations will be spending the largest amount of new or additional funding in 2019 as well as the technology areas where their organizations will be reducing funding by the highest amount in 2019 compared with 2018:

Knowing Which Problems To Solve With Analytics

Manufacturers getting the most value from analytics start with a solid business case first, based on a known problem they’ve been trying to solve either in their supply chains, production or fulfillment operations. The manufacturers I’ve worked with focus on how to get more orders produced in less time while gaining greater visibility across production operations. They’re all under pressure to stay in compliance with customers and regulatory reporting; in many cases needing to ship product quality data with each order and host over 60 to 70 audits a year from customers in their plants. Analytics is becoming popular because it automates the drudgery of reporting that would otherwise take IT team’s days or weeks to do manually.

As one CIO put it as we walked his shop floor, “we’re using analytics to do the heavy data crunching when we’re hosting customer audits so we can put our quality engineers to work raising the bar of product excellence instead of having them run reports for a week.” As we walked the shop floor he explained how dashboards are tailored to each role in manufacturing, and the flat-screen monitors provide real-time data on how five key areas of performance are doing. Like many other CIOs facing the challenge of improving production efficiency and quality, he’s relying on the five core metrics below in the initial roll-out of analytics across manufacturing operations, finance, accounting, supply chain management, procurement, and service:

  • Manufacturing Cycle Time – One of the most popular metrics in manufacturing, Cycle Time quantifies the amount of elapsed time from when an order is placed until the product is manufactured and entered into finished goods inventory. Cycle times vary by segment of the manufacturing industry, size of manufacturing operation, global location and relative stability of supply chains supporting operations. Real-time integration, applying Six Sigma to know process bottlenecks, and re-engineering systems to be more customer-focused improve this metrics’ performance. Cycle Time is a predictor of the future of manufacturing as this metric captures improvement made across systems and processes immediately.
  • Supplier Inbound Quality Levels – Measuring the dimensions of how effective a given supplier is at consistently meeting a high level of product quality and on-time delivery is valuable in orchestrating a stable supply chain. Inbound quality levels often vary from one shipment to the next, so it’s helpful to have Statistical Process Control (SPC) charts that quantify and show the trends of quality levels over time. Nearly all manufacturers are relying on Six Sigma programs to troubleshoot specific trouble spots and problem areas of suppliers who may have wide variations in product quality in a given period. This metric is often used for ranking which suppliers are the most valuable to a factory and production network as well.
  • Production Yield Rates By Product, Process, and Plant Location – Yield rates reflect how efficient a machine or entire process is in transforming raw materials into finished products. Manufacturers rely on automated and manually-based approaches to capture this metric, with the latest generation of industrial machinery capable of producing its yield rate levels over time. Process-related manufacturers rely on this metric to manage every production run they do. Microprocessors, semiconductors, and integrated circuit manufacturers are continually monitoring yield rates to determine how they are progressing against plans and goals. Greater real-time integration, improved quality management systems, and greater supply chain quality and compliance all have a positive impact on yield rates. It’s one of the key measures of production yield as it reflects how well-orchestrated entire production processes are.
  • Perfect Order Performance – Perfect order performance measures how effective a manufacturer is at delivering complete, accurate, damage-free orders to customers on time. The equation that defines the perfect order Index (POI) or perfect order performance is the (Percent of orders delivered on time) * (Percent of orders complete) * (Percent of orders damage free) * (Percent of orders with accurate documentation) * 100. The majority of manufacturers are attaining a perfect order performance level of 90% or higher, according to The American Productivity and Quality Center (APQC). The more complex the product lines, configuration options, including build-to-order, configure-to-order, and engineer-to-order, the more challenging it is to attain a high, perfect order level. Greater analytics and insights gained from real-time integration and monitoring help complex manufacturers attained higher perfect order levels over time.
  • Return Material Authorization (RMA) Rate as % Of Manufacturing – The purpose of this metric is to define the percentage of products shipped to customers that are returned due to defective parts or not otherwise meeting their requirements. RMAs are a good leading indicator of potential quality problems. RMAs are also a good measure of how well integrated PLM, ERP and CRM systems, resulting in fewer product errors.

Conclusion

The manufacturers succeeding with analytics start with a compelling business case, one that has an immediate impact on the operations of their organizations. CIOs are prioritizing analytics and BI to gain greater insights and visibility across every phase of manufacturing. They’re also adopting analytics and BI to reduce the reporting drudgery their engineering, IT, and manufacturing teams are faced with as part of regular customer audits. There are also a core set of metrics manufacturers rely on to manage their business, and the five mentioned here are where many begin.

What’s New In Gartner’s Hype Cycle For AI, 2019

What's New In Gartner's Hype Cycle For AI, 2019

  • Between 2018 and 2019, organizations that have deployed artificial intelligence (AI) grew from 4% to 14%, according to Gartner’s 2019 CIO Agenda survey.
  • Conversational AI remains at the top of corporate agendas spurred by the worldwide success of Amazon Alexa, Google Assistant, and others.
  • Enterprises are making progress with AI as it grows more widespread, and they’re also making more mistakes that contribute to their accelerating learning curve.

These and many other new insights are from Gartner Hype Cycle For AI, 2019 published earlier this year and summarized in the recent Gartner blog post, Top Trends on the Gartner Hype Cycle for Artificial Intelligence, 2019.  Gartner’s definition of Hype Cycles includes five phases of a technology’s lifecycle and is explained here. Gartner’s latest Hype Cycle for AI reflects the growing popularity of AutoML, intelligent applications, AI platform as a service or AI cloud services as enterprises ramp up their adoption of AI. The Gartner Hype Cycle for AI, 2019, is shown below:

Details Of What’s New In Gartner’s Hype Cycle For AI, 2019

  • Speech Recognition is less than two years to mainstream adoption and is predicted to deliver the most significant transformational benefits of all technologies on the Hype Cycle. Gartner advises its clients to consider including speech recognition on their short-term AI technology roadmaps. Gartner observes, unlike other technologies within the natural-language processing area, speech to text (and text to speech) is a stand-alone commodity where its modules can be plugged into a variety of natural-language workflows. Leading vendors in this technology area Amazon, Baidu, Cedat 85, Google, IBM, Intelligent Voice, Microsoft, NICE, Nuance, and Speechmatics.
  • Eight new AI-based technologies are included in this year’s Hype Cycle, reflecting Gartner enterprise clients’ plans to scale AI across DevOps and IT while supporting new business models. The latest technologies to be included in the Hype Cycle for AI reflect how enterprises are trying to demystify AI to improve adoption while at the same time, fuel new business models. The new technologies include the following:
  1. AI Cloud Services – AI cloud services are hosted services that allow development teams to incorporate the advantages inherent in AI and machine learning.
  2. AutoML – Automated machine learning (AutoML) is the capability of automating the process of building, deploying, and managing machine learning models.
  3. Augmented Intelligence – Augmented intelligence is a human-centered partnership model of people and artificial intelligence (AI) working together to enhance cognitive performance, including learning, decision making, and new experiences.
  4. Explainable AI – AI researchers define “explainable AI” as an ensemble of methods that make black-box AI algorithms’ outputs sufficiently understandable.
  5. Edge AI – Edge AI refers to the use of AI techniques embedded in IoT endpoints, gateways, and edge devices, in applications ranging from autonomous vehicles to streaming analytics.
  6. Reinforcement Learning – Reinforcement learning has the primary potential for gaming and automation industries and has the potential to lead to significant breakthroughs in robotics, vehicle routing, logistics, and other industrial control scenarios.
  7. Quantum Computing – Quantum computing has the potential to make significant contributions to the areas of systems optimization, machine learning, cryptography, drug discovery, and organic chemistry. Although outside the planning horizon of most enterprises, quantum computing could have strategic impacts in key businesses or operations.
  8. AI Marketplaces – Gartner defines an AI Marketplace as an easily accessible place supported by a technical infrastructure that facilitates the publication, consumption, and billing of reusable algorithms. Some marketplaces are used within an organization to support the internal sharing of prebuilt algorithms among data scientists.
  • Gartner considers the following AI technologies to be on the rise and part of the Innovation Trigger phase of the AI Hype Cycle. AI Marketplaces, Reinforcement Learning, Decision Intelligence, AI Cloud Services, Data Labeling, and Annotation Services, and Knowledge Graphs are now showing signs of potential technology breakthroughs as evidence by early proof-of-concept stories. Technologies in the Innovation Trigger phase of the Hype Cycle often lack usable, scalable products with commercial viability not yet proven.
  • Smart Robots and AutoML are at the peak of the Hype Cycle in 2019. In contrast to the rapid growth of industrial robotics systems that adopted by manufacturers due to the lack of workers, Smart Robots are defined by Gartner as having electromechanical form factors that work autonomously in the physical world, learning in short-term intervals from human-supervised training and demonstrations or by their supervised experiences including taking direction form human voices in a shop floor environment. Whiz robot from SoftBank Robotics is an example of a SmartRobot that will be sold under robot-as-a service (RaaS) model and originally be available only in Japan. AutoML is one of the most hyped technology in AI this year. Gartner defines automated machine learning (AutoML) as the capability of automating the process of building, deploying, or managing machine learning models. Leading vendors providing AutoML platforms and applications include Amazon SageMaker, Big Squid, dotData, DataRobot, Google Cloud Platform, H2O.ai, KNIME, RapidMiner, and Sky Tree.
  • Nine technologies were removed or reassigned from this years’ Hype Cycle of AI compared to 2018. Gartner has removed nine technologies, often reassigning them into broader categories. Augmented reality and Virtual Reality are now part of augmented intelligence, a more general category, and remains on many other Hype Cycles. Commercial UAVs (drones) is now part of edge AI, a more general category. Ensemble learning had already reached the Plateau in 2018 and has now graduated from the Hype Cycle. Human-in-the-loop crowdsourcing has been replaced by data labeling and annotation services, a broader category. Natural language generation is now included as part of NLP. Knowledge management tools have been replaced by insight engines, which are more relevant to AI. Predictive analytics and prescriptive analytics are now part of decision intelligence, a more general category.

Sources:

Hype Cycle for Artificial Intelligence, 2019, Published 25 July 2019, (Client access reqd.)

Top Trends on the Gartner Hype Cycle for Artificial Intelligence, 2019 published September 12, 2019

How AI Is Protecting Against Payments Fraud

  • 80% of fraud specialists using AI-based platforms believe the technology helps reduce payments fraud.
  • 63.6% of financial institutions that use AI believe it is capable of preventing fraud before it happens, making it the most commonly cited tool for this purpose.
  • Fraud specialists unanimously agree that AI-based fraud prevention is very effective at reducing chargebacks.
  • The majority of fraud specialists (80%) have seen AI-based platforms reduce false positives, payments fraud, and prevent fraud attempts.

AI is proving to be very effective in battling fraud based on results achieved by financial institutions as reported by senior executives in a recent survey, AI Innovation Playbook published by PYMNTS in collaboration with Brighterion. The study is based on interviews with 200 financial executives from commercial banks, community banks, and credit unions across the United States. For additional details on the methodology, please see page 25 of the study. One of the more noteworthy findings is that financial institutions with over $100B in assets are the most likely to have adopted AI, as the study has found 72.7% of firms in this asset category are currently using AI for payment fraud detection.

Taken together, the findings from the survey reflect how AI thwarts payments fraud and deserves to be a high priority in any digital business today. Companies, including Kount and others, are making strides in providing AI-based platforms, further reducing the risk of the most advanced, complex forms of payments fraud.

Why AI Is Perfect For Fighting Payments Fraud

Of the advanced technologies available for reducing false positives, reducing and preventing fraud attempts, and reducing manual reviews of potential payment fraud events, AI is ideally suited to provide the scale and speed needed to take on these challenges. More specifically, AI’s ability to interpret trend-based insights from supervised machine learning, coupled with entirely new knowledge gained from unsupervised machine learning algorithms are reducing the incidence of payments fraud. By combining both machine learning approaches, AI can discern if a given transaction or series of financial activities are fraudulent or not, alerting fraud analysts immediately if they are and taking action through predefined workflows. The following are the main reasons why AI is perfect for fighting payments fraud:

  • Payments fraud-based attacks are growing in complexity and often have a completely different digital footprint or pattern, sequence, and structure, which make them undetectable using rules-based logic and predictive models alone. For years e-commerce sites, financial institutions, retailers, and every other type of online business relied on rules-based payment fraud prevention systems. In the earlier years of e-commerce, rules and simple predictive models could identify most types of fraud. Not so today, as payment fraud schemes have become more nuanced and sophisticated, which is why AI is needed to confront these challenges.
  • AI brings scale and speed to the fight against payments fraud, providing digital businesses with an immediate advantage in battling the many risks and forms of fraud. What’s fascinating about the AI companies offering payments fraud solutions is how they’re trying to out-innovate each other when it comes to real-time analysis of transaction data. Real-time transactions require real-time security. Fraud solutions providers are doubling down on this area of R&D today, delivering impressive results. The fastest I’ve seen is a 250-millisecond response rate for calculating risk scores using AI on the Kount platform, basing queries on a decades-worth of data in their universal data network. By combining supervised and unsupervised machine learning algorithms, Kount is delivering fraud scores that are twice as predictive as previous methods and faster than competitors.
  • AI’s many predictive analytics and machine learning techniques are ideal for finding anomalies in large-scale data sets in seconds. The more data a machine learning model has to train on, the more accurate its predictive value. The greater the breadth and depth of data, a given machine learning algorithm learns from means more than how advanced or complex a given algorithm is. That’s especially true when it comes to payments fraud detection where machine learning algorithms learn what legitimate versus fraudulent transactions look like from a contextual intelligence perspective. By analyzing historical account data from a universal data network, supervised machine learning algorithms can gain a greater level of accuracy and predictability. Kount’s universal data network is among the largest, including billions of transactions over 12 years, 6,500 customers, 180+ countries and territories, and multiple payment networks. The data network includes different transaction complexities, verticals, and geographies, so machine learning models can be properly trained to predict risk accurately. That analytical richness includes data on physical real-world and digital identities creating an integrated picture of customer behavior.

Bottom Line:  Payments fraud is insidious, difficult to stop, and can inflict financial harm on any business in minutes. Battling payment fraud needs to start with a pre-emptive strategy to thwart fraud attempts by training machine learning models to quickly spot and act on threats then building out the strategy across every selling and service channel a digital business relies on.

What Needs To Be On Your CPQ Channel Roadmap In 2019

Bottom Line:  Adding new features to your CPQ channel selling platform directly benefits your resellers and channel partners, driving greater revenue, channel loyalty, and expansion into new markets.

Personalization Is Key To CPQ Succeeding In Channels

Sustaining and strengthening relationships across all indirect selling channels succeeds when dealers, multi-tier distributors, resellers, intermediaries, and service providers each can personalize the CPQ applications and platforms they use. Larger dealers, distributors, and resellers are adept at personalizing CPQ selling portals by the various roles in their organization. Personalization combined with a highly intuitive, configurable interface improves CPQ applications’ ease of use, enabling channel partners to get more done. The more intuitive and easy a CPQ application is to use, the more channel partners rely on it to place orders. When distributors are representing, on average, 12 different manufacturers,  the one with the most intuitive, easily used CPQ system often gets the majority of sales.

Another aspect of personalization is defining levels of resellers. When many organizations first launch their CPQ channel selling strategies, one of the first requests they have is to organize all channel partners into performance categories. Differentiating channel partners on sales performance, customer satisfaction, and aftermarket revenue then gamifying how every one of them can move up a level is proving to be very effective at increasing channel sales. Competing with one another to be the top reseller for the manufacturing and service companies lifts an entire channel network to higher performance.

Every dealer, multi-tier distributor, reseller, intermediary, and service provider also has a unique way of selling that works best for their business. Another must-have feature on any CPQ channel roadmap is greater workflow flexibility to support increasingly complex, IoT- and AI-enabled configurable products. Smart, connected products are the future of manufacturing and channel sales. Capgemini estimates that the size of the connected products market will be $519B to $685B by 2020. Workflows like the one shown below of an internal sales rep using a multichannel CPQ system to order a customized product are due for a refresh to support even greater flexibility for more channels and greater product options.


Most Valuable Features For A CPQ Channel Roadmap In 2019

There’s a direct link between how effective a CPQ platform is across multi-tier distribution networks and the productivity of sales teams using them. 83% of sales teams are using CPQ apps today based on Accenture Interactive’s recent study, Empowering Your Sales Force: It’s Not Just Automation, It’s Personal (8 pp., PDF, no opt-in). There’s ample evidence that the more effective a CPQ platform is at equipping dealers, multi-tier distributors, resellers, intermediaries, and service providers, the greater the sales they achieve. The 2019 B2B Buyers Survey Report, by DemandGen in collaboration with DemandBase, found that B2B buyers are more likely to purchase from sales representatives who demonstrate a stronger knowledge of the solution area and the business landscape (65%) compared to competitors. B2B buyers also give high praise for sales teams who can provide quotes quickly and respond to their inquiries promptly (63%), in addition to providing higher-quality content (61%). Each of these benefits is derived from a CPQ platform that can scale across every phase of the selling lifecycle.

The following are the key features needed on CPQ channel roadmaps in 2019 to stay competitive and scale sales and revenue on pace with market growth:

  • Greater personalization for each type of partner portal supported by real-time integration to CRM and ERP systems, designed to scale for sales team turnover across multi-tier distribution networks. Channel partners’ sales teams tend to churn quickly, and it’s best to design in intuitive, easily configured portals by sales role to help new hires get up to speed fast. Channel sales associates are typically the fastest-churning area of any selling business. With greater personalization comes the need for greater integration to provide the data needed to enable partner portals to have a greater depth of functionality. The following graphic from Deloitte’s recent study, Configure, Price, and Quote (CPQ) Capabilities illustrates this point:

  • Support for multi-tier pricing, price management, price optimization, price enforcement, and special workflows, including Special Pricing Requests (SPR). Baseline CPQ platforms support price management and have successfully transitioned multi-tier distribution networks off of Microsoft Excel spreadsheets to a single pricing model that scales across all products and channels. Consider adopting advanced pricing logic to support SPRs so sales operations teams don’t have to do this process manually. In manufacturers who have transitioned from manual to automated SPR approvals, average deal sizes have increased over 60%, and productivity jumped over 76% according to a recent Gartner survey.
  • Augment advanced product configuration tools by making them more intuitive and easier to use to sell the more advanced products in your catalog. It’s time to push the boundaries of CPQ channel selling systems to sell more complex products and drive greater revenue and margins. Forward-thinking manufacturers are taking a virtual design and 3D-based design approach to accomplish this. Enabling channel partners to take larger orders for more complex products is paying off.
  • Upgrade guided selling strategies to be more than catalog-based selection systems, mining customer data using machine learning to see which products they have the greatest propensity to buy when. It’s time to migrate off of the guided selling systems that are selecting products from catalogs that may deliver the best gross margins or have a traditionally high attach rate with the product the customer is buying. Machine learning is making it possible to provide greater accuracy and precision to recommendations than ever before.
  • Improve the usability of sales promotions, rebates, and most importantly, Market Development Funds (MDF). It’s amazing how much time manufacturers are spending manually handling MDF claims today. It’s time to automate this area of the CPQ channel roadmap and save thousands of hours and dollars a year while enabling resellers to get reimbursed faster or get the funds they need to grow their businesses.
  • Contract management is a must-have for CPQ channel roadmaps today. Integrating a cloud-based contract management system into a CPQ platform is vital for taking one more step towards an end-to-end quote-to-cash workflow being in place. Real-time integration to contract management can save days of waiting for contract approvals, all leading to more closed deals and faster, more lucrative sales cycles.
  • Manufacturers can realize greater revenue potential through their channels by combining machine learning insights to find those aftermarket customers most ready to buy while accelerating sales closing cycles with CPQ. Manufacturers want to make sure they are getting their fair share of the aftermarket. Using a machine learning-based application, they can help their resellers increase average deal sizes by knowing which products and services to offer when. They’ll also know when to present upsell and cross-sell offers into an account at a specific point in time when they will be most likely to lead to additional sales, all based on machine learning-based insights. Combining machine learning-based insights to guide resellers to the most valuable and highest probability customer accounts ready to buy with an intuitive CPQ system increases sales efficiency leading to higher revenues.

Conclusion

Now that the solutions exist for resellers to simplify CPQ selling strategies, it’s up to each manufacturer to decide how competitive they want their channel partner roadmap to be. Any given manufacturer’s quoting and configuration tools today are competing with 11 others on average for a reseller’s time, it is clear that roadmaps need a refresh to stay competitive. Suggested options include offering greater personalization, multi-tier pricing and a more thorough approach to price management, advanced product configuration support, revamped guided selling strategies and improved usability of sales promotions, rebates, and Market Development Funds (MDF). Manufacturers need to prioritize each of these features relative to their product- and revenue-specific goals by channel. A fascinating company who has deep expertise in designing, implementing, and scaling analytics, service, sales, IoT, and CPQ solutions for manufacturers is eLogic. The company’s mission is to enable manufacturers to achieve the highest value customer engagement and product & service lifecycle performance. eLogic is regarded as the leading system integration partner in CPQ and product configuration and is considered a global leader in delivering business solutions for manufacturers across SAP configuration technologies and Microsoft Dynamics 365, Power Platform & Azure.

%d bloggers like this: