Skip to content
Advertisements

Posts from the ‘Machine learning’ Category

How AI & Machine Learning Are Redefining The War For Talent

These and many other fascinating insights are from Gartner’s recent research note, Cool Vendors in Human Capital Management for Talent Acquisition (PDF, 13 pp., client access reqd.) that illustrates how AI and machine learning are fundamentally redefining the war for talent. Gartner selected five companies that are setting a rapid pace of innovation in talent management, taking on Human Capital Management’s (HCM) most complex challenges. The five vendors Gartner mentions in the research note are AllyO, Eightfold, jobpal, Knack, and Vettd. Each has concentrated on creating and launching differentiated applications that address urgent needs enterprises have across the talent acquisition landscape. Gartner’s interpretation of the expanding Talent Acquisition Landscape is shown below (please click on the graphic to expand):

Source: Gartner, Cool Vendors in Human Capital Management for Talent Acquisition, Written by Jason Cerrato, Jeff Freyermuth, John Kostoulas, Helen Poitevin, Ron Hanscome. 7 September 2018

Company Growth Plans Are Accelerating The War For Talent

The average employee’s tenure at a cloud-based enterprise software company is 19 months; in the Silicon Valley, this trends to 14 months due to intense competition for talent according to C-level executives leading these companies. Fast-growing enterprise cloud computing companies and many other businesses like them need specific capabilities, skill sets, and associates who know how to unlearn old concepts and learn new ones. Today across tech and many other industries, every company’s growth strategy is predicated on how well they attract, engage, screen, interview, select and manage talent over associates’ lifecycles.

Of the five companies Gartner names as Cool Vendors in the field of Human Capital Management for Talent Acquisition, Eightfold is the only one achieving personalization at scale today. Attaining personalization at scale is essential if any growing business is going to succeed in attracting, acquiring and growing talent that can support their growth goals and strategies. Eightfold’s approach makes it possible to scale personalized responses to specific candidates in a company’s candidate community while defining the ideal candidate for each open position.

Gartner finds Eightfold noteworthy for its AI-based Talent Intelligence Platform that combines analysis of publicly available data, internal data repositories, HCM systems, ATS tools, and spreadsheets then creates ontologies based on organization-specific success criteria. Each ontology, or area of talent management interest, is customizable for further queries using the app’s easily understood and navigated user interface. Gartner also finds that Eightfold.ai is one of the first examples of a self-updating corporate candidate database. Profiles in the system are now continually updated using external data gathering, without applicants reapplying or submitting updated profiles. The Eightfold.ai Talent Intelligence Platform is shown below:

Taking A Data-Driven Approach to Improve Diversity

AI and machine learning have the potential to remove conscious and unconscious biases from hiring decisions, leading to hiring decisions based on capabilities and innate skills. Many CEOs and senior management teams are enthusiastically endorsing diversity programs yet struggling to make progress. AI and machine learning-based approaches like Eightfold’s can help to accelerate them to their diversity goals and attain a more egalitarian workplace. Data is the great equalizer, with a proven ability to eradicate conscious and unconscious biases from hiring decisions and enable true diversity by equally evaluating candidates based on their experience, growth potential and strengths.

Conclusion

At the center of every growing business’ growth plans is the need to attract, engage, recruit, and retain the highest quality employees possible. As future research in the field of HCM will show, the field is in crisis because it’s relying more on biases than solid data. Breaking through the barrier of conscious and unconscious biases will provide contextual intelligence of an applicant’s unique skills, capabilities and growth trajectories that are far beyond the scope of any resume or what an ATS can provide. The war for talent is being won today with data and insights that strip away biases to provide prospects who are ready for the challenges of helping their hiring companies grow.

Advertisements

Google Needs To Make Machine Learning Their Growth Fuel

  • In 2017 Google outspent Microsoft, Apple, and Facebook on R&D spending with the majority being on AI and machine learning.
  • Google needs new AI- and machine learning-driven businesses that have lower Total Acquisition Costs (TAC) to offset the rising acquisition costs of their ad and search businesses.
  • One of the company’s initial forays into AI and machine learning was its $600M acquisition of AI startup DeepMind in January 2014.
  • Google has launched two funds dedicated solely to AI: Gradient Ventures and the Google Assistant Investment Program, both of which are accepting pitches from AI and machine learning startups today.
  • On its Q4’17 earnings call, the company announced that its cloud business is now bringing in $1B per quarter. The number of cloud deals worth $1M+ that Google has sold more than tripled between 2016 and 2017.
  • Google’s M&A strategy is concentrating on strengthening their cloud business to better compete against Amazon AWS and Microsoft Azure.

These and many other fascinating insights are from CB Insight’s report, Google Strategy Teardown (PDF, 49 pp., opt-in). The report explores how Alphabet, Google’s parent company is relying on Artificial Intelligence (AI) and machine learning to capture new streams of revenue in enterprise cloud computing and services. Also, the report looks at how Alphabet can combine search, AI, and machine learning to revolutionize logistics, healthcare, and transportation. It’s a thorough teardown of Google’s potential acquisitions, strategic investments, and partnerships needed to maintain search dominance while driving revenue from new markets.

Key takeaways from the report include the following:

  • Google needs new AI- and machine learning-driven businesses that have lower Total Acquisition Costs (TAC) to offset the rising acquisition costs of their ad and search businesses. CB Insights found Google is experiencing rising TAC in their core ad and search businesses. With the strategic shift to mobile, Google will see TAC escalate even further. Their greatest potential for growth is infusing greater contextual intelligence and knowledge across the entire series of companies that comprise Alphabet, shown in the graphic below.

  • Google has launched two funds dedicated solely to AI: Gradient Ventures and the Google Assistant Investment Program, both of which are accepting pitches from AI and machine learning startups today. Gradient Ventures is an ROI fund focused on supporting the most talented founders building AI-powered companies. Former tech founders are leading Gradient Ventures, assisting in turning ideas into companies. Gradient Venture’s portfolio is shown below:

  • In 2017 Google outspent Microsoft, Apple, and Facebook on R&D spending with the majority being on AI and machine learning. Amazon dominates R&D spending across the top five tech companies investments in R&D in 2017 with $22.6B. Facebook leads in percent of total sales invested in R&D with 19.1%.

  • Google AI led the development of Google’s highly popular open source machine software library and framework Tensor Flow and is home to the Google Brain team. Google’s approach to primary research in the fields of AI, machine learning, and deep learning is leading to a prolific amount of research being produced and published. Here’s the search engine for their publication database, which includes many fascinating studies for review. Part of Google Brain’s role is to work with other Alphabet subsidiaries to support and lead their AI and machine learning product initiatives. An example of this CB Insights mentions in the report is how Google Brain collaborated with autonomous driving division Waymo, where it has helped apply deep neural nets to vehicles’ pedestrian detection The team has also been successful in increasing the number of AI and machine learning patents, as CB Insight’s analysis below shows:

  • Mentions of AI and machine learning are soaring on Google quarterly earnings calls, signaling senior management’s prioritizing these areas as growth fuel. CB Insights has an Insights Trends tool that is designed to analyze unstructured text and find linguistics-based associations, models and statistical insights from them. Analyzing Google earnings calls transcripts found AI and machine learning mentions are soaring during the last call.

  • Google’s M&A strategy is concentrating on strengthening their cloud business to better compete against Amazon AWS and Microsoft Azure. Google acquired Xively in Q1 of this year followed by Cask Data and Velostrata in Q2. Google needs to continue acquiring cloud-based companies who can accelerate more customer wins in the enterprise and mid-tier, two areas Amazon AWS and Microsoft Azure have strong momentum today.

Where Business Intelligence Is Delivering Value In 2018

  • Executive Management, Operations, and Sales are the three primary roles driving Business Intelligence (BI) adoption in 2018.
  • Dashboards, reporting, end-user self-service, advanced visualization, and data warehousing are the top five most important technologies and initiatives strategic to BI in 2018.
  • Small organizations with up to 100 employees have the highest rate of BI penetration or adoption in 2018.
  • Organizations successful with analytics and BI apps define success in business results, while unsuccessful organizations concentrate on adoption rate first.
  • 50% of vendors offer perpetual on-premises licensing in 2018, a notable decline over 2017. The number of vendors offering subscription licensing continues to grow for both on-premises and public cloud models.
  • Fewer than 15% of respondent organizations have a Chief Data Officer, and only about 10% have a Chief Analytics Officer today.

These and many other fascinating insights are from Dresner Advisory Service’s  2018 Wisdom of Crowds® Business Intelligence Market Study. In its ninth annual edition, the study provides a broad assessment of the business intelligence (BI) market and a comprehensive look at key user trends, attitudes, and intentions.  The latest edition of the study adds Information Technology (IT) analytics, sales planning, and GDPR, bringing the total to 36 topics under study.

“The Wisdom of Crowds BI Market Study is the cornerstone of our annual research agenda, providing the most in-depth and data-rich portrait of the state of the BI market,” said Howard Dresner, founder and chief research officer at Dresner Advisory Services. “Drawn from the first-person perspective of users throughout all industries, geographies, and organization sizes, who are involved in varying aspects of BI projects, our report provides a unique look at the drivers of and success with BI.” Survey respondents include IT (28%), followed by Executive Management (22%), and Finance (19%). Sales/Marketing (8%) and the Business Intelligence Competency Center (BICC) (7%). Please see page 15 of the study for specifics on the methodology.

Key takeaways from the study include the following:

  • Executive Management, Operations, and Sales are the three primary roles driving Business Intelligence (BI) adoption in 2018. Executive management teams are taking more of an active ownership role in BI initiatives in 2018, as this group replaced Operations as the leading department driving BI adoption this year. The study found that the greatest percentage change in functional areas driving BI adoption includes Human Resources (7.3%), Marketing (5.9%), BICC (5.1%) and Sales (5%).

  • Making better decisions, improving operational efficiencies, growing revenues and increased competitive advantage are the top four BI objectives organizations have today. Additional goals include enhancing customer service and attaining greater degrees of compliance and risk management. The graph below rank orders the importance of BI objectives in 2018 compared to the percent change in BI objectives between 2017 and 2018. Enhanced customer service is the fastest growing objective enterprises adopt BI to accomplish, followed by growth in revenue (5.4%).

  • Dashboards, reporting, end-user self-service, advanced visualization, and data warehousing are the top five most important technologies and initiatives strategic to BI in 2018. The study found that second-tier initiatives including data discovery, data mining/advanced algorithms, data storytelling, integration with operational processes, and enterprise and sales planning are also critical or very important to enterprises participating in the survey. Technology areas being hyped heavily today including the Internet of Things, cognitive BI, and in-memory analysis are relatively low in the rankings as of today, yet are growing. Edge computing increased 32% as a priority between 2017 and 2018 for example. The results indicate the core aspect of excelling at using BI to drive better business decisions and more revenue still dominate the priorities of most businesses today.
  • Sales & Marketing, Business Intelligence Competency Center (BICC) and   Executive Management have the highest level of interest in dashboards and advanced visualization. Finance has the greatest interest in enterprise planning and budgeting. Operations including manufacturing, supply chain management, and services) leads interest in data mining, data storytelling, integration with operational processes, mobile device support, data catalog and several other technologies and initiatives. It’s understandable that BICC leaders most advocate end-user self-service and attach high importance to many other categories as they are internal service bureaus to all departments in an enterprise. It’s been my experience that BICCs are always looking for ways to scale BI adoption and enable every department to gain greater value from analytics and BI apps. BICCs in the best run companies are knowledge hubs that encourage and educate all departments on how to excel with analytics and BI.

  • Insurance companies most prioritize dashboards, reporting, end-user self-service, data warehousing, data discovery and data mining. Business Services lead the adoption of advanced visualization, data storytelling, and embedded BI. Manufacturing most prioritizes sales planning and enterprise planning but trails in other high-ranking priorities. Technology prioritizes Software-as-a-Service (SaaS) given its scale and speed advantages. The retail & wholesale industry is going through an analytics and customer experience revolution today. Retailers and wholesalers lead all others in data catalog adoption and mobile device support.

  • Insurance, Technology and Business Services vertical industries have the highest rate of BI adoption today. The Insurance industry leads all others in BI adoption, followed by the Technology industry with 40% of organizations having 41% or greater adoption or penetration. Industries whose BI adoption is above average include Business Services and Retail & Wholesale. The following graphic illustrates penetration or adoption of Business Intelligence solutions today by industry.

  • Dashboards, reporting, advanced visualization, and data warehousing are the highest priority investment areas for companies whose budgets increased from 2017 to 2018. Additional high priority areas of investment include advanced visualization and data warehousing. The study found that less well-funded organizations are most likely to lead all others by investing in open source software to reduce costs.

  • Small organizations with up to 100 employees have the highest rate of BI penetration or adoption in 2018. Factors contributing to the high adoption rate for BI in small businesses include business models that need advanced analytics to function and scale, employees with the latest analytics and BI skills being hired to also scale high growth businesses and fewer barriers to adoption compared to larger enterprises. BI adoption tends to be more pervasive in small businesses as a greater percentage of employees are using analytics and BI apps daily.

  • Executive Management is most familiar with the type and number of BI tools in use across the organization. The majority of executive management respondents say their teams are using between one or two BI tools today. Business Intelligence Competency Centers (BICC) consistently report a higher number of BI tools in use than other functional areas given their heavy involvement in all phases of analytics and BI project execution. IT, Sales & Marketing and Finance are likely to have more BI tools in use than Operations.

  • Enterprises rate BI application usability and product quality & reliability at an all-time high in 2018. Other areas of major improvements on the part of vendors include improving ease of implementation, online training, forums and documentation, and completeness of functionality. Dresner’s research team found between 2017 and 2018 integration of components within product dropped, in addition to scalability. The study concludes the drop in integration expertise is due to an increasing number of software company acquisitions aggregating dissimilar products together from different platforms.

Five Reasons Why Machine Learning Needs To Make Resumes Obsolete

  • Hiring companies nationwide miss out on 50% or more of qualified candidates and tech firms incorrectly classify up 80% of candidates due to inaccuracies and shortcomings of existing Applicant Tracking Systems (ATS), illustrating how faulty these systems are for enabling hiring.
  • It takes on average 42 days to fill a position, and up to 60 days or longer to fill positions requiring in-demand technical skills and costs an average $5,000 to fill each position.
  • Women applicants have a 19% chance of being eliminated from consideration for a job after a recruiter screen and 30% after an onsite interview, leading to a massive loss of brainpower and insight every company needs to grow.

It’s time the hiring process gets smarter, more infused with contextual intelligence, insight, evaluating candidates on their mastery of needed skills rather than judging candidates on resumes that reflect what they’ve achieved in the past. Enriching the hiring process with greater machine learning-based contextual intelligence finds the candidates who are exceptional and have the intellectual skills to contribute beyond hiring managers’ expectations. Machine learning algorithms can also remove any ethic- and gender-specific identification of a candidate and have them evaluated purely on expertise, experiences, merit, and skills.

The hiring process relied on globally today hasn’t changed in over 500 years. From Leonardo da Vinci’s handwritten resume from 1482, which reflects his ability to build bridges and support warfare versus the genius behind Mona Lisa, Last Supper, Vitruvian Man, and a myriad of scientific discoveries and inventions that modernized the world, the approach job seekers take for pursuing new positions has stubbornly defied innovation. ATS apps and platforms classify inbound resumes and provide rankings of candidates based on just a small glimpse of their skills seen on a resume. When what’s needed is an insight into which managerial, leadership and technical skills & strengths any given candidate is attaining mastery of and at what pace.  Machine learning broadens the scope of what hiring companies can see in candidates by moving beyond the barriers of their resumes. Better hiring decisions are being made, and the Return on Investment (ROI) drastically improves by strengthening hiring decisions with greater intelligence. Key metrics including time-to-hire, cost-to-hire, retention rates, and performance all will improve when greater contextual intelligence is relied on.

Look Beyond Resumes To Win The War For Talent

Last week I had the opportunity to speak with the Vice President of Human Resources for one of the leading technology think tanks globally. He’s focusing on hundreds of technical professionals his organization needs in six months, 12 months and over a year from now to staff exciting new research projects that will deliver valuable Intellectual Property (IP) including patents and new products.

Their approach begins by seeking to understand the profiles and core strengths of current high performers, then seek out matches with ideal candidates in their community of applicants and the broader technology community. Machine learning algorithms are perfectly suited for completing the needed comparative analysis of high performer’s capabilities and those of candidates, whose entire digital persona is taken into account when comparisons are being completed. The following graphic illustrates the eightfold.ai Talent Intelligence Platform (TIP), illustrating how integrated it is with publicly available data, internal data repositories, Human Capital Resource Management (HRM) systems, ATS tools. Please click on the graphic to expand it for easier reading.

The comparative analysis of high achievers’ characteristics with applicants takes seconds to complete, providing a list of prospects complete with profiles. Machine learning-derived profiles of potential hires meeting the high performers’ characteristics provided greater contextual intelligence than any resume ever could. Taking an integrated approach to creating the Talent Intelligence Platform (TIP) yields insights not available with typical hiring or ATS solutions today. The profile below reflects the contextual intelligence and depth of insight possible when machine learning is applied to an integrated dataset of candidates. Please click on the graphic to expand it for easier reading. Key elements in the profile below include the following:

  • Career Growth Bell Curve – Illustrates how a given candidate’s career progressions and performance compares relative to others.

  • Social Following On Public Sites –  Provides a real-time glimpse into the candidate’s activity on Github, Open Stack, and other sites where technical professionals can share their expertise. This also provides insight into how others perceive their contributions.

  • Highlights Of Background That Is Relevant To Job(s) Under Review Provides the most relevant data from the candidate’s history in the profile so recruiters and managers can more easily understand their strengths.

  • Recent Publications – Publications provide insights into current and previous interests, areas of focus, mindset and learning progression over the last 10 to 15 years or longer.

  • Professional overlap that makes it easier to validate achievements chronicled in the resume – Multiple sources of real-time career data validate and provide greater context and insight into resume-listed accomplishments.

The key is understanding the context in which a candidate’s capabilities are being evaluated. And a 2-page resume will never give enough latitude to the candidate to cover all bases. For medium to large companies – doing this accurately and quickly is a daunting task if done manually – across all roles, all the geographies, all the candidates sourced, all the candidates applying online, university recruiting, re-skilling inside the company, internal mobility for existing employees, and across all recruitment channels. This is where machine learning can be an ally to the recruiter, hiring manager, and the candidate.

Five Reasons Why Machine Learning Needs To Make Resumes Obsolete

Reducing the costs and time-to-hire, increasing the quality of hires and staffing new initiatives with the highest quality talent possible all fuels solid revenue growth. Relying on resumes alone is like being on a bad Skype call where you only hear every tenth word in the conversation. Using machine learning-based approaches brings greater acuity, clarity, and visibility into hiring decisions.

The following are the five reasons why machine learning needs to make resumes obsolete:

  1. Resumes are like rearview mirrors that primarily reflect the past. What needed is more of a focus on where someone is going, why (what motivates them) and what are they fascinated with and learning about on their own. Resumes are rearview mirrors and what’s needed is an intelligent heads-up display of what their future will look like based on present interests and talent.
  2. By relying on a 500+-year-old process, there’s no way of knowing what skills, technologies and training a candidate is gaining momentum in. The depth and extent of mastery in specific areas aren’t reflected in the structure of resumes. By integrating multiple sources of data into a unified view of a candidate, it’s possible to see what areas they are growing the quickest in from a professional development standpoint.
  3. It’s impossible to game a machine learning algorithm that takes into account all digital data available on a candidate, while resumes have a credibility issue. Anyone who has hired subordinates, staff, and been involved in hiring decisions has faced the disappointment of finding out a promising candidate lied on a resume. It’s a huge let-down. Resumes get often gamed with one recruiter saying at least 60% of resumes have exaggerations and in some cases lies on them. Taking all data into account using a platform like TIP shows the true candidate and their actual skills.
  4. It’s time to take a more data-driven approach to diversity that removes unconscious biases. Resumes today immediately carry inherent biases in them. Recruiter, hiring managers and final interview groups of senior managers draw their unconscious biases based on a person’s name, gender, age, appearance, schools they attended and more. It’s more effective to know their skills, strengths, core areas of intelligence, all of which are better predictors of job performance.
  5. Reduces the risk of making a bad hire that will churn out of the organization fast. Ultimately everyone hires based in part on their best judgment and in part on their often unconscious biases. It’s human nature. With more data the probability of making a bad hire is reduced, reducing the risk of churning through a new hire and costing thousands of dollars to hire then replace them. Having greater contextual intelligence reduces the downside risks of hiring, removes biases by showing with solid data just how much a person is qualified or not for a role, and verifies their background strengths, skills, and achievements. Factors contributing to unconscious biases including gender, race, age or any other factors can be removed from profiles, so candidates are evaluated only on their potential to excel in the roles they are being considered for.

Bottom line: It’s time to revolutionize resumes and hiring processes, moving them into the 21st century by redefining them with greater contextual intelligence and insight enabled by machine learning.

 

Five Ways Machine Learning Can Save Your Company From A Security Breach Meltdown

  • $86B was spent on security in 2017, yet 66% of companies have still been breached an average of five or more times.
  • Just 55% of CEOs say their organizations have experienced a breach, while 79% of CTOs acknowledge breaches have occurred. One in approximately four CEOs (24%) aren’t aware if their companies have even had a security breach.
  • 62% of CEOs inaccurately cite malware as the primary threat to cybersecurity.
  • 68% of executives whose companies experienced significant breaches in hindsight believe that the breach could have been prevented by implementing more mature identity and access management strategies.

These and many other fascinating findings are from the recently released Centrify and Dow Jones Customer Intelligence study, CEO Disconnect is Weakening Cybersecurity (31 pp, PDF, opt-in).

One of the most valuable findings from the study is how CEOs can reduce the risk of a security breach meltdown by rethinking their core cyber defense strategy by maturing their identity and access management strategies.

However, 62% of CEOs have the impression that multi-factor authentication is difficult to manage. Thus, their primary security concern is primarily driven by how to avoid delivering poor user experiences. In this context, machine learning can assist in strengthening the foundation of a multi-factor authentication platform to increase effectiveness while streamlining user experiences.

Five Ways Machine Learning Saves Companies From Security Breach Meltdowns

Machine learning is solving the security paradox all enterprises face today. Spending millions of dollars on security solutions yet still having breaches occur that are crippling their ability to compete and grow, enterprises need to confront this paradox now. There are many ways machine learning can be used to improve enterprise security. With identity being the primary point of attacks, the following are five ways machine learning can be leveraged in the context of identity and access management to minimize the risk of falling victim to a data breach.

  1. Thwarting compromised credential attacks by using risk-based models that validate user identity based on behavioral pattern matching and analysis. Machine learning excels at using constraint-based and pattern matching algorithms, which makes them ideal for analyzing behavioral patterns of people signing in to systems that hold sensitive information. Compromised credentials are the most common and lethal type of breach. Applying machine learning to this challenge by using a risk-based model that “learns’ behavior over time is stopping security breaches today.
  2. Attaining Zero Trust Security (ZTS) enterprise-wide using risk scoring models that flex to a businesses’ changing requirements. Machine learning enables Zero Trust Security (ZTS) frameworks to scale enterprise-wide, providing threat assessments and graphs that scale across every location. These score models are invaluable in planning and executing growth strategies quickly across broad geographic regions. CEOs need to see multi-factor authentication as a key foundation of ZTS frameworks that can help them grow faster. Machine learning enables IT to accelerate the development of Zero Trust Security (ZTS) frameworks and scale them globally. Removing security-based roadblocks that get in the way of future growth needs to be the highest priority CEOs address. A strong ZTS framework is as much a contributor to revenue as is any distribution or selling channel.
  3. Streamlining security access for new employees by having persona-based risk model profiles that can be quickly customized by IT for specific needs. CEOs most worry about security’s poor user experience and its impacts on productivity. The good news is that the early multi-factor authentication workflows that caused poor user experiences are being redefined with contextual insights and intelligence based on more precise persona-based risk scoring models. As the models “learn” the behaviors of employees regarding access, the level of authentication changes and the experience improves. By learning new behavior patterns over time, machine learning is accelerating how quickly employees can gain access to secured services and systems.
  4. Provide predictive analytics and insights into which are the most probable sources of threats, what their profiles are and what priority to assign to them. CIOs and the security teams they manage need to have enterprise-wide visibility of all potential threats, ideally prioritized by potential severity. Machine learning algorithms are doing this today, providing threat assessments and defining which are the highest priority threats that CIOs and their teams need to address.
  5. Stop malware-based breaches by learning how hackers modify the code bases in an attempt to bypass multi-factor authentication. One of the favorite techniques for hackers to penetrate an enterprise network is to use impersonation-based logins and passwords to pass malware onto corporate servers. Malware breaches can be extremely challenging to track. One approach that is working is when enterprises implement a ZTS framework and create specific scenarios to trap, stop and destroy suspicious malware activity.

10 Ways Machine Learning Is Revolutionizing Manufacturing In 2018

  • Improving semiconductor manufacturing yields up to 30%, reducing scrap rates, and optimizing fab operations is achievable with machine learning.
  • Reducing supply chain forecasting errors by 50% and lost sales by 65% with better product availability is achievable with machine learning.
  • Automating quality testing using machine learning is increasing defect detection rates up to 90%.

Bottom line: Machine learning algorithms, applications, and platforms are helping manufacturers find new business models, fine-tune product quality, and optimize manufacturing operations to the shop floor level.

Manufacturers care most about finding new ways to grow, excel at product quality while still being able to take on short lead-time production runs from customers. New business models often bring the paradox of new product lines that strain existing ERP, CRM and PLM systems by the need always to improve time-to-customer performance. New products are proliferating in manufacturing today, and delivery windows are tightening. Manufacturers are turning to machine learning to improve the end-to-end performance of their operations and find a performance-based solution to this paradox.

The ten ways machine learning is revolutionizing manufacturing in 2018 include the following:

  • Improving semiconductor manufacturing yields up to 30%, reducing scrap rates, and optimizing fab operations are is achievable with machine learning. Attaining up to a 30% reduction in yield detraction in semiconductor manufacturing, reducing scrap rates based on machine learning-based root-cause analysis and reducing testing costs using AI optimization are the top three areas where machine learning will improve semiconductor manufacturing. McKinsey also found that AI-enhanced predictive maintenance of industrial equipment will generate a 10% reduction in annual maintenance costs, up to a 20% downtime reduction and 25% reduction in inspection costs. Source: Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company.

  • Asset Management, Supply Chain Management, and Inventory Management are the hottest areas of artificial intelligence, machine learning and IoT adoption in manufacturing today. The World Economic Forum (WEF) and A.T. Kearney’s recent study of the future of production find that manufacturers are evaluating how combining emerging technologies including IoT, AI, and machine learning can improve asset tracking accuracy, supply chain visibility, and inventory optimization. Source: Technology and Innovation for the Future of Production: Accelerating Value Creation (38 pp., PDF, no opt-in) World Economic Forum with A.T. Kearney.

  • Manufacturer’s adoption of machine learning and analytics to improve predictive maintenance is predicted to increase 38% in the next five years according to PwC. Analytics and MI-driven process and quality optimization are predicted to grow 35% and process visualization and automation, 34%. PwC sees the integration of analytics, APIs and big data contributing to a 31% growth rate for connected factories in the next five years. Source: Digital Factories 2020: Shaping the future of manufacturing (48 pp., PDF, no opt-in) PriceWaterhouseCoopers

  • McKinsey predicts machine learning will reduce supply chain forecasting errors by 50% and reduce lost sales by 65% with better product availability. Supply chains are the lifeblood of any manufacturing business. Machine learning is predicted to reduce costs related to transport and warehousing and supply chain administration by 5 to 10% and 25 to 40%, respectively. Due to machine learning, overall inventory reductions of 20 to 50% are possible. Source: Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company.

  • Improving demand forecast accuracy to reduce energy costs and negative price variances using machine learning uncovers price elasticity and price sensitivity as well. Honeywell is integrating AI and machine-learning algorithms into procurement, strategic sourcing and cost management. Source: Honeywell Connected Plant: Analytics and Beyond. (23 pp., PDF, no opt-in) 2017 Honeywell User’s Group.

  • Automating inventory optimization using machine learning has improved service levels by 16% while simultaneously increasing inventory turns by 25%. AI and machine learning constraint-based algorithms and modeling are making it possible scale inventory optimization across all distribution locations, taking into account external, independent variables that affect demand and time-to-customer delivery performance. Source: Transform the manufacturing supply chain with Multi-Echelon inventory optimization, Microsoft, March 1, 2018.

  • Combining real-time monitoring and machine learning is optimizing shop floor operations, providing insights into machine-level loads and production schedule performance. Knowing in real-time how each machine’s load level impacts overall production schedule performance leads to better decisions managing each production run. Optimizing the best possible set of machines for a given production run is now possible using machine learning algorithms. Source: Factories of the Future: How Symbiotic Production Systems, Real-Time Production Monitoring, Edge Analytics and AI Are Making Factories Intelligent and Agile, (43 pp., PDF, no opt-in) Youichi Nonaka, Senior Chief Researcher, Hitachi R&D Group and Sudhanshu Gaur Director, Global Center for Social Innovation Hitachi America R&D

  • Improving the accuracy of detecting costs of performance degradation across multiple manufacturing scenarios reduces costs by 50% or more. Using real-time monitoring technologies to create accurate data sets that capture pricing, inventory velocity, and related variables gives machine learning apps what they need to determine cost behaviors across multiple manufacturing scenarios. Source: Leveraging AI for Industrial IoT (27 pp., PDF, no opt-in) Chetan Gupta, Ph.D. Chief Data Scientist, Big Data Lab, Hitachi America Ltd. Date: Sept. 19th, 2017

  • A manufacturer was able to achieve a 35% reduction in test and calibration time via accurate prediction of calibration and test results using machine learning. The project’s goal was to reduce test and calibration time in the production of mobile hydraulic pumps. The methodology focused on using a series of machine learning models that would predict test outcomes and learn over time. The process workflow below was able to isolate the bottlenecks, streamlining test and calibration time in the process. Source: The Value Of Data Science Standards In Manufacturing Analytics (13 pp., PDF, no opt-in) Soundar Srinivasan, Bosch Data Mining Solutions And Services

  • Improving yield rates, preventative maintenance accuracy and workloads by the asset is now possible by combining machine learning and Overall Equipment Effectiveness (OEE). OEE is a pervasively used metric in manufacturing as it combines availability, performance, and quality, defining production effectiveness. Combined with other metrics, it’s possible to find the factors that impact manufacturing performance the most and least. Integrating OEE and other datasets in machine learning models that learn quickly through iteration are one of the fastest growing areas of manufacturing intelligence and analytics today. Source: TIBCO Manufacturing Solutions, TIBCO Community, January 30, 2018

Additional reading:

Artificial Intelligence (AI) Delivering Breakthroughs in Industrial IoT (26 pp., PDF, no opt-in) Hitachi

Artificial Intelligence and Robotics and Their Impact on the Workplace (120 pp., PDF, no opt-in) IBA Global Employment Institute

Artificial Intelligence: The Next Digital Frontier? (80 pp., PDF, no opt-in) McKinsey and Company

Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing (20 pp., PDF, no opt-in), Applied Materials, Applied Global Services

Connected Factory and Digital Manufacturing: A Competitive Advantage, Shantanu Rai, HCL Technologies (36 pp., PDF, no opt-in)

Demystifying AI, Machine Learning, and Deep Learning, DZone, AI Zone

Digital Factories 2020: Shaping the future of manufacturing (48 pp., PDF, no opt-in) PriceWaterhouseCoopers

Emerging trends in global advanced manufacturing: Challenges, Opportunities, And Policy Responses (76 pp., PDF, no opt-in) University of Cambridge

Factories of the Future: How Symbiotic Production Systems, Real-Time Production Monitoring, Edge Analytics and AI Are Making Factories Intelligent and Agile, (43 pp., PDF, no opt-in) Youichi Nonaka, Senior Chief Researcher, Hitachi R&D Group and Sudhanshu Gaur Director, Global Center for Social Innovation Hitachi America R&D

Get started with the Connected factory preconfigured solution, Microsoft Azure

Honeywell Connected Plant: Analytics and Beyond. (23 pp., PDF, no opt-in) 2017 Honeywell User’s Group.

Impact of the Fourth Industrial Revolution on Supply Chains (22 pp., PDF, no opt-in) World Economic Forum

Leveraging AI for Industrial IoT (27 pp., PDF, no opt-in) Chetan Gupta, Ph.D. Chief Data Scientist, Big Data Lab, Hitachi America Ltd. Date: Sept. 19th, 2017

Machine Learning & Artificial Intelligence Presentation (14 pp., PDF, no opt-in) Erik Hjerpe Volvo Car Group

Machine Learning Techniques in Manufacturing Applications & Caveats, (44 pp., PDF, no opt-in), Thomas Hill, Ph.D. | Exec. Director Analytics, Dell

Machine learning: the power and promise of computers that learn by example (128 pp., PDF, no opt-in) Royal Society UK

Predictive maintenance and the smart factory (8 pp., PDF, no opt-in) Deloitte

Priore, P., Gómez, A., Pino, R., & Rosillo, R. (2014). Dynamic scheduling of manufacturing systems using machine learning: An updated reviewAi Edam28(1), 83-97.

Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company

Technology and Innovation for the Future of Production: Accelerating Value Creation (38 pp., PDF, no opt-in) World Economic Forum with A.T. Kearney

The Future of Manufacturing; Making things in a changing world (52 pp., PDF, no opt-in) Deloitte University Press

The transformative potential of AI in the manufacturing industry, Microsoft, by Sanjay Ravi, Managing Director, Worldwide Discrete Manufacturing, Microsoft, September 25, 2017

The Value Of Data Science Standards In Manufacturing Analytics (13 pp., PDF, no opt-in) Soundar Srinivasan, Bosch Data Mining Solutions And Services

TIBCO Manufacturing Solutions, TIBCO Community, January 30, 2018

Transform the manufacturing supply chain with Multi-Echelon inventory optimization, Microsoft, March 1, 2018.

Turning AI into concrete value: the successful implementers’ toolkit (28 pp., PDF, no opt-in) Capgemini Consulting

Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applicationsProduction & Manufacturing Research4(1), 23-45.

10 Ways Machine Learning Is Revolutionizing Marketing

 

  • 84% of marketing organizations are implementing or expanding AI and machine learning in 2018.
  • 75% of enterprises using AI and machine learning enhance customer satisfaction by more than 10%.
  • 3 in 4 organizations implementing AI and machine learning increase sales of new products and services by more than 10% according to Capgemini.

Measuring marketing’s many contributions to revenue growth is becoming more accurate and real-time thanks to analytics and machine learning. Knowing what’s driving more Marketing Qualified Leads (MQLs), Sales Qualified Leads (SQL), how best to optimize marketing campaigns, and improving the precision and profitability of pricing are just a few of the many areas machine learning is revolutionizing marketing.

The best marketers are using machine learning to understand, anticipate and act on the problems their sales prospects are trying to solve faster and with more clarity than any competitor. Having the insight to tailor content while qualifying leads for sales to close quickly is being fueled by machine learning-based apps capable of learning what’s most effective for each prospect and customer. Machine learning is taking contextual content,  marketing automation including cross-channel marketing campaigns and lead scoring, personalization, and sales forecasting to a new level of accuracy and speed.

The strongest marketing departments rely on a robust set of analytics and Key Performance Indicators (KPIs) to measure their progress towards revenue and customer growth goals. With machine learning, marketing departments will be able to deliver even more significant contributions to revenue growth, strengthening customer relationships in the process.

The following are 10 ways machine learning is revolutionizing marketing today and in the future:

  1. 57% of enterprise executives believe the most significant growth benefit of AI and machine learning will be improving customer experiences and support. 44% believe that AI and machine learning will provide the ability to improve on existing products and services. Marketing departments and the Chief Marketing Officers (CMOs) running them are the leaders devising and launching new strategies to deliver excellent customer experiences and are one of the earliest adopters of machine learning. Orchestrating every aspect of attracting, selling and serving customers is being improved by marketers using machine learning apps to more accurately predict outcomes. Source: Artificial Intelligence: What’s Possible for Enterprises In 2017 (PDF, 16 pp., no opt-in), Forrester, by Mike Gualtieri, November 1, 2016. Courtesy of The Stack.

  1. 58% of enterprises are tackling the most challenging marketing problems with AI and machine learning first, prioritizing personalized customer care, new product development. These “need to do” marketing areas have the highest complexity and highest benefit. Marketers haven’t been putting as much emphasis on the “must do” areas of high benefit and low complexity according to Capgemini’s analysis. These application areas include Chatbots and virtual assistants, reducing revenue churn, facial recognition and product and services recommendations. Source:  Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting. 2017. (PDF, 28 pp., no opt-in).

  1. By 2020, real-time personalized advertising across digital platforms and optimized message targeting accuracy, context and precision will accelerate. The combined effect of these marketing technology improvements will increase sales effectiveness in retail and B2C-based channels. Sales Qualified Lead (SQL) lead generation will also increase, potentially reducing sales cycles and increasing win rates. Source: Can Machines be Creative? How Technology is Transforming Marketing Personalization and Relevance, IDC White Paper Sponsored by Gerry Brown, July 2017.

  1. Analyze and significantly reduce customer churn using machine learning to streamline risk prediction and intervention models. Instead of relying on expensive and time-consuming approaches to minimize customer churn, telecommunications companies and those in high-churn industries are turning to machine learning. The following graphic illustrates how defining risk models help determine how actions aimed at averting churn affect churn impact probability and risk. An intervention model allows marketers to consider how the level of intervention could affect the probability of churn and the amount of customer lifetime value (CLV). Source: Analyzing Customer Churn by using Azure Machine Learning.

  1. Price optimization and price elasticity are growing beyond industries with limited inventories including airlines and hotels, proliferating into manufacturing and services. All marketers are increasingly relying on machine learning to define more competitive, contextually relevant pricing. Machine learning apps are scaling price optimization beyond airlines, hotels, and events to encompass product and services pricing scenarios. Machine learning is being used today to determine pricing elasticity by each product, factoring in channel segment, customer segment, sales period and the product’s position in an overall product line pricing strategy. The following example is from Microsoft Azure’s Interactive Pricing Analytics Pre-Configured Solution (PCS). Source: Azure Cortana Interactive Pricing Analytics Pre-Configured Solution.

  1. Improving demand forecasting, assortment efficiency and pricing in retail marketing have the potential to deliver a 2% improvement in Earnings Before Interest & Taxes (EBIT), 20% stock reduction and 2 million fewer product returns a year. In Consumer Packaged Goods (CPQ) and retail marketing organizations, there’s significant potential for AI and machine learning to improve the entire value chain’s performance. McKinsey found that using a concerted approach to applying AI and machine learning across a retailer’s value chains has the potential to deliver a 50% improvement of assortment efficiency and a 30% online sales increase using dynamic pricing. Source:  Artificial Intelligence: The Next Frontier? McKinsey Global Institute (PDF, 80 pp., no opt-in)

  1. Creating and fine-tuning propensity models that guide cross-sell and up-sell strategies by product line, customer segment, and persona. It’s common to find data-driven marketers building and using propensity models to define the products and services with the highest probability of being purchased. Too often propensity models are based on imported data, built in Microsoft Excel, making their ongoing use time-consuming. Machine learning is streamlining creation, fine-tuning and revenue contributions of up-sell and cross-sell strategies by automating the entire progress. The screen below is an example of a propensity model.

  1. Lead scoring accuracy is improving, leading to increased sales that are traceable back to initial marketing campaigns and sales strategies. By using machine learning to qualify the further customer and prospect lists using relevant data from the web, predictive models including machine learning can better predict ideal customer profiles. Each sales lead’s predictive score becomes a better predictor of potential new sales, helping sales prioritize time, sales efforts and selling strategies. The following two slides are from an excellent webinar Mintigo hosted with Sirius Decisions and Sales Hacker. It’s a fascinating look at how machine learning is improving sales effectiveness. Source: Give Your SDRs An Unfair Advantage with Predictive (webinar slides on Slideshare).

  1. Identifying and defining the sales projections of specific customer segments and microsegments using RFM (recency, frequency and monetary) modeling within machine learning apps is becoming pervasive. Using RFM analysis as part of a machine learning initiative can provide accurate definitions of the best customers, most loyal, biggest spenders, almost lost, lost customers and lost cheap customers.
  2. Optimizing the marketing mix by determining which sales offers, incentive and programs are presented to which prospects through which channels is another way machine learning is revolutionizing marketing. Specific sales offers are created supported by contextual content, offers, and incentives. These items are made available to an optimization engine which uses machine learning logic to continually try to predict the best combination of marketing mix elements that will lead to a new sale, up-sell or cross-sell. Amazon’s product recommendation feature is an example of how their e-commerce site is using machine learning to increase up-sell, cross-sell and recommended products revenue.

Data Sources On Machine Learning’s Impact On Marketing:

4 Ways to Use Machine Learning in Marketing Automation, Medium, March 30, 2017

84 percent of B2C marketing organizations are implementing or expanding AI in 2018. Infographic. Amplero.
AI, Machine Learning, and their Application for Growth, Adelyn Zhou. SlideShare/LinkedIn.  Feb. 8, 2018.

AI: The Next Generation of Marketing Driving Competitive Advantage throughout the Customer Life Cycle (PDF, 10 pp., no opt-in), Forrester, February 2017.

An Executive’s Guide to Machine Learning, McKinsey Quarterly. June 2015.

Artificial Intelligence for Marketers 2018: Finding Value beyond the Hype, eMarketer. (PDF, 20 pp., no opt-in). October 2017

Artificial Intelligence: The Next Frontier? McKinsey Global Institute (PDF, 80 pp., no opt-in)

Artificial Intelligence: The Ultimate Technological Disruption Ascends, Woodside Capital Partners. (PDF, 111 pp., no opt-in). January 2017.

AWS Announces Amazon Machine Learning Solutions Lab, Marketing Technology Insights

B2B Predictive Marketing Analytics Platforms: A Marketer’s Guide, (PDF, 36 pp., no opt-in) Marketing Land Research Report.
Four Use Cases of Machine Learning in Marketing, June 28, 2018, Martech Advisor,
How Artificial Intelligence and Machine Learning Will Reshape Small Businesses, SMB Group (PDF, 8 pp., no opt-in) May 2017.

How Machine Learning Helps Sales Success (PDF, 12 pp., no opt-in) Cognizant

Inside Salesforce Einstein Artificial Intelligence A Look at Salesforce Einstein Capabilities, Use Cases and Challenges, Doug Henschen, Constellation Research, February 15, 2017

Machine Learning for Marketers (PDF, 91 pp., no opt-in) iPullRank

Machine Learning Marketing – Expert Consensus of 51 Executives and Startups, TechEmergence. May 15, 2017.

Marketing & Sales Big Data, Analytics, and the Future of Marketing & Sales, (PDF, 60 pp., no opt-in), McKinsey & Company.

Sizing the prize – What’s the real value of AI for your business and how can you capitalize? (PDF, 32 pp., no opt-in) PwC, 2017.

The New Frontier of Price Optimization, MIT Technology Review. September 07, 2017.

The Power Of Customer Context, Forrester (PDF, 20 pp., no opt-in) Carlton A. Doty, April 14, 2014. Provided courtesy of Pegasystems.

Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting. 2017. (PDF, 28 pp., no opt-in)

Using machine learning for insurance pricing optimization, Google Cloud Big Data and Machine Learning Blog, March 29, 2017

What Marketers Can Expect from AI in 2018, Jacob Shama. Mintigo. January 16, 2018.

Roundup Of Machine Learning Forecasts And Market Estimates, 2018

  • Machine learning patents grew at a 34% Compound Annual Growth Rate (CAGR) between 2013 and 2017, the third-fastest growing category of all patents granted.
  • International Data Corporation (IDC) forecasts that spending on AI and ML will grow from $12B in 2017 to $57.6B by 2021.
  • Deloitte Global predicts the number of machine learning pilots and implementations will double in 2018 compared to 2017, and double again by 2020.

These and many other fascinating insights are from the latest series of machine learning market forecasts, market estimates, and projections. Machine learning’s potential impact across many of the world’s most data-prolific industries continues to fuel venture capital investment, private equity (PE) funding, mergers, and acquisitions all focused on winning the race of Intellectual Property (IP) and patents in this field. One of the fastest growing areas of machine learning IP is the development of custom chipsets. Deloitte Global is predicting up to 800K machine learning chips will be in use across global data centers this year. Enterprises are increasing their research, investment, and piloting of machine learning programs in 2018. And while the methodologies all vary across the many sources of forecasts, market estimates, and projections, all reflect how machine learning is improving the acuity and insights of companies on how to grow faster and more profitably. Key takeaways from the collection of machine learning market forecasts, market estimates and projections include the following:

  • Within the Business Intelligence (BI) & analytics market, Data Science platforms that support machine learning are predicted to grow at a 13% CAGR through 2021. Data Science platforms will outperform the broader BI & analytics market, which is predicted to grow at an 8% CAGR in the same period. Data Science platforms will grow in value from $3B in 2017 to $4.8B in 2021. Source: An Investors’ Guide to Artificial Intelligence, J.P. Morgan. November 27, 2017 (110 pp., PDF, no opt-in).

  • Machine learning patents grew at a 34% Compound Annual Growth Rate (CAGR) between 2013 and 2017, the third-fastest growing category of all patents granted. IBM, Microsoft, Google, LinkedIn, Facebook, Intel, and Fujitsu were the seven biggest ML patent producers in 2017. Source: IFI Claims Patent Services (Patent Analytics) 8 Fastest Growing Technologies SlideShare Presentation.

  • 61% of organizations most frequently picked Machine Learning / Artificial Intelligence as their company’s most significant data initiative for next year. Of those respondent organizations indicating they actively use Machine Learning (ML) and Artificial Intelligence (AI), 58% percent indicated they ran models in production. Source: 2018 Outlook: Machine Learning and Artificial Intelligence, A Survey of 1,600+ Data Professionals (14 pp., PDF, no opt-in).

  • Tech market leaders including Amazon, Apple, Google, Tesla, and Microsoft are leading their industry sectors by a wide margin in machine learning (ML) and AI investment. Each is designing ML into future-generation products and using ML and AI to improve customer experiences and improve the efficiency of selling channels. Source: Will You Embrace AI Fast Enough? AT Kearney, January 2018.

  • Deloitte Global predicts the number of machine learning pilots and implementations will double in 2018 compared to 2017, and double again by 2020. Factors driving the increasing pace of ML pilots include more pervasive support of Application Program Interfaces (APIs), automating data science tasks, reducing the need for training data, accelerating training and greater insight into explaining results. Source: Deloitte Global Predictions 2018 Infographics.

  • 60% of organizations at varying stages of machine learning adoption, with nearly half (45%) saying the technology has led to more extensive data analysis & insights. 35% can complete faster data analysis and increased the speed of insight, delivering greater acuity to their organizations. 35% are also finding that machine learning is enhancing their R&D capabilities for next-generation products. Source: Google & MIT Technology Review study: Machine Learning: The New Proving Ground for Competitive Advantage (10 pp., PDF, no opt-in).

  • McKinsey estimates that total annual external investment in AI was between $8B to $12B in 2016, with machine learning attracting nearly 60% of that investment. McKinsey estimates that total annual external investment in AI was between $8B to $12B in 2016, with machine learning attracting nearly 60% of that investment. Robotics and speech recognition are two of the most popular investment areas. Investors are most favoring machine learning startups due to quickness code-based start-ups have at scaling up to include new features fast. Software-based machine learning startups are preferred over their more cost-intensive machine-based robotics counterparts that often don’t have their software counterparts do. As a result of these factors and more, Corporate M&A is soaring in this area. The following graphic illustrates the distribution of external investments by category from the study. Source: McKinsey Global Institute Study, Artificial Intelligence, The Next Digital Frontier (80 pp., PDF, free, no opt-in).

  • Deloitte Global is predicting machine learning chips used in data centers will grow from a 100K to 200K run rate in 2016 to 800K this year. At least 25% of these will be Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASICs). Deloitte found the Total Available Market (TAM) for Machine Learning (ML) Accelerator technologies could potentially reach $26B by 2020. Source: Deloitte Global Predictions 2018.

  • Amazon is relying on machine learning to improve customer experiences in key areas of their business including product recommendations, substitute product prediction, fraud detection, meta-data validation and knowledge acquisition. For additional details, please see the presentation, Machine Learning At Amazon, Amazon Web Services (47 pp., PDF no opt-in).

Sources of Market Data on Machine Learning:

2018 Outlook: Machine Learning and Artificial Intelligence, A Survey of 1,600+ Data Professionals. MEMSQL. (14 pp., PDF, no opt-in)

Advice for applying Machine Learning, Andrew Ng, Stanford University. (30 pp., PDF, no opt-in)

An Executive’s Guide to Machine Learning, McKinsey Quarterly. June 2015

An Investors’ Guide to Artificial Intelligence, J.P. Morgan. November 27, 2017 (110 pp., PDF, no opt-in)

Artificial intelligence and machine learning in financial services Market developments and financial stability implications, Financial Stability Board. (45 pp., PDF, no opt-in)

Big Data and AI Strategies Machine Learning and Alternative Data Approach to Investing, J.P. Morgan. (280 pp., PDF. No opt-in).

Google & MIT Technology Review study: Machine Learning: The New Proving Ground for Competitive Advantage (10 pp., PDF, no opt-in).

Hitting the accelerator: the next generation of machine-learning chips, Deloitte. (6 pp., PDF, no opt-in).

How Do Machines Learn? Algorithms are the Key to Machine Learning. Booz Allen Hamilton. (Infographic)

IBM Predicts Demand For Data Scientists Will Soar 28% By 2020, Forbes. May 13, 2017

Machine Learning At Amazon, Amazon Web Services (47 pp., PDF no opt-in).

Machine Learning Evolution (infographic). PwC. April 17, 2017 Machine learning: things are getting intense. Deloitte (6 pp., PDF. No opt-in)

Machine Learning: The Power and Promise Of Computers That Learn By Example. The Royal Society’s Machine Learning Project (128 pp., PDF, no opt-in)

McKinsey Global Institute StudyArtificial Intelligence, The Next Digital Frontier (80 pp., PDF, free, no opt-in)

McKinsey’s State Of Machine Learning And AI, 2017, Forbes, July 9, 2017

Predictions 2017: Artificial Intelligence Will Drive The Insights Revolution. Forrester, November 2, 2016 (9 pp., PDF, no opt-in)

Risks And Rewards: Scenarios around the economic impact of machine learning, The Economist Intelligence Unit. (80 pp., PDF, no opt-in)

Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? Digital/McKinsey & Company. (52 pp., PDF, no opt-in)

So What Is Machine Learning Anyway?  Business Insider. Nov. 23, 2017

The 10 Most Innovative Companies In AI/Machine Learning 2017, Wired

The Business Impact and Use Cases for Artificial Intelligence. Gartner (28 pp., PDF, no opt-in)

The Build-Or-Buy Dilemma In AIBoston Consulting Group. January 4, 2018.

The Next Generation of Medicine: Artificial Intelligence and Machine Learning, TM Capital (25 pp., PDF, free, opt-in)

The Roadmap to Enterprise AI, Rage Networks Brief based on Gartner research. (17 pp., PDF, no opt-in)

Will You Embrace AI Fast Enough? AT Kearney. January 2018

 

Machine Learning’s Greatest Potential Is Driving Revenue In The Enterprise

  • Enterprise investments in machine learning will nearly double over the next three years, reaching 64% adoption by 2020.
  • International Data Corporation (IDC) is forecasting spending on artificial intelligence (AI) and machine learning will grow from $8B in 2016 to $47B by 2020.
  • 89% of CIOs are either planning to use or are using machine learning in their organizations today.
  • 53% of CIOs say machine learning is one of their core priorities as their role expands from traditional IT operations management to business strategists.
  • CIOs are struggling to find the skills they need to build their machine learning models today, especially in financial services.

These and many other insights are from the recently published study, Global CIO Point of View. The entire report is downloadable here (PDF, 24 pp., no opt-in). ServiceNow and Oxford Economics collaborated on this survey of 500 CIOs in 11 countries on three continents, spanning 25 industries. In addition to the CIO interviews, leading experts in machine learning and its impact on enterprise performance contributed to the study. For additional details on the methodology, please see page 4 of the study and an online description of the CIO Survey Methodology here.

Digital transformation is a cornerstone of machine learning adoption. 72% of CIOs have responsibility for digital transformation initiatives that drive machine learning adoption. The survey found that the greater the level of digital transformation success, the more likely machine learning-based programs and strategies would succeed. IDC predicts that 40% of digital transformation initiatives will be supported by machine learning and artificial intelligence by 2019.

Key takeaways from the study include the following:

  • 90% of CIOs championing machine learning in their organizations today expect improved decision support that drives greater topline revenue growth. CIOs who are early adopters are most likely to pilot, evaluate and integrate machine learning into their enterprises when there is a clear connection to driving business results. Many CIO compensation plans now include business growth and revenue goals, making the revenue potential of new technologies a high priority.
  • 89% of CIOs are either planning to use or using machine learning in their organizations today. The majority, 40%, are in the research and planning phases of deployment, with an additional 26% piloting machine learning. 20% are using machine learning in some areas of their business, and 3% have successfully deployed enterprise-wide. The following graphic shows the percentage of respondents by stage of their machine learning journey.

  • Machine learning is a key supporting technology leading the majority Finance, Sales & Marketing, and Operations Management decisions today. Human intervention is still required across the spectrum of decision-making areas including Security Operations, Customer Management, Call Center Management, Operations Management, Finance and Sales & Marketing. The study predicts that by 2020, machine learning apps will have automated 70% of Security Operations queries and 30% of Customer Management ones.

  • Automation of repetitive tasks (68%), making complex decisions (54%) and recognizing data patterns (40%) are the top three most important capabilities CIOs of machine learning CIOs are most interested in.  Establishing links between events and supervised learning (both 32%), making predictions (31%) and assisting in making basic decisions (18%) are additional capabilities CIOs are looking for machine learning to accelerate. In financial services, machine learning apps are reviewing loan documents, sorting applications to broad parameters, and approving loans faster than had been possible before.

  • Machine learning adoption and confidence by CIOs varies by region, with North America in the lead (72%) followed by Asia-Pacific (61%). Just over half of European CIOs (58%) expect value from machine learning and decision automation to their company’s overall strategy. North American CIOs are more likely than others to expect value from machine learning and decision automation across a range of business areas, including overall strategy (72%, vs. 61% in Asia Pacific and 58% in Europe). North American CIOs also expect greater results from sales and marketing (63%, vs. 47% Asia-Pacific and 38% in Europe); procurement (50%, vs. 34% in Asia-Pacific and 34% in Europe); and product development (48%, vs. 29% in Asia-Pacific and 29% in Europe).
  • CIOs challenging the status quo of their organization’s analytics direction are more likely to rely on roadmaps for defining and selling their vision of machine learning’s revenue contributions. More than 70% of early adopter CIOs have developed a roadmap for future business process changes compared with just 33% of average CIOs. Of the CIOs and senior management teams in financial services, the majority are looking at how machine learning can increase customer satisfaction, lifetime customer value, improving revenue growth. 53% of CIOs from our survey say machine learning is one of their core priorities as their role expands from traditional IT operations to business-wide strategy.

Sources: CIOs Cutting Through the Hype and Delivering Real Value from Machine Learning, Survey Shows

Roundup Of Internet Of Things Forecasts And Market Estimates, 2018

 

  • According to IDC, worldwide spending on the IoT is forecast to reach $772.5B in 2018. That represents an increase of 15% over the $674B that was spent on IoT in 2017.
  • The global IoT market will grow from $157B in 2016 to $457B by 2020, attaining a Compound Annual Growth Rate (CAGR) of 28.5%.
  • Discrete Manufacturing, Transportation and Logistics, and Utilities will lead all industries in IoT spending by 2020, averaging $40B each.
  • Bain predicts B2B IoT segments will generate more than $300B annually by 2020, including about $85B in the industrial sector.
  • Internet Of Things Market To Reach $267B By 2020 according to Boston Consulting Group.
  • According to IDC FutureScape: Worldwide IoT 2018 Predictions, By the end of 2020, close to 50% of new IoT applications built by enterprises will leverage an IoT platform that offers outcome-focused functionality based on comprehensive analytics capabilities.

The last twelve months of Internet of Things (IoT) forecasts and market estimates reflect enterprises’ higher expectations for scale, scope and Return on Investment (ROI) from their IoT initiatives. Business benefits and outcomes are what drives the majority of organizations to experiment with IoT and invest in large-scale initiatives. That expectation is driving a new research agenda across the many research firms mentioned in this roundup. The majority of enterprises adopting IoT today are using metrics and key performance indicators (KPIs) that reflect operational improvements, customer experience, logistics, and supply chain gains. Key takeaways from the collection of IoT forecasts and market estimates include the following:

  • The global IoT market will grow from $157B in 2016 to $457B by 2020, attaining a Compound Annual Growth Rate (CAGR) of 28.5%. According to GrowthEnabler & MarketsandMarkets analysis, the global IoT market share will be dominated by three sub-sectors; Smart Cities (26%), Industrial IoT (24%) and Connected Health (20%). Followed by Smart Homes (14%), Connected Cars (7%), Smart Utilities (4%) and Wearables (3%). Source: GrowthEnabler, Market Pulse Report, Internet of Things (IoT), 19 pp., PDF, free, no opt-in.

  • Bain predicts B2B IoT segments will generate more than $300B annually by 2020, including about $85B in the industrial sector. Advisory firm Bain predicts the most competitive areas of IoT will be in the enterprise and industrial segments. Bain predicts consumer applications will generate $150B by 2020, with B2B applications being worth more than $300B. Globally, enthusiasm for the Internet of Things has fueled more than $80B in merger and acquisition (M&A) investments by major vendors and more than $30B in venture capital, according to Bain’s estimates. Source: Bain Insights: Choosing The Right Platform For The Internet Of Things

  • The global IoT market is growing at a 23% CAGR of 23% between 2014-2019, enabling smart solutions in major industries including agriculture, automotive and infrastructure. ― Key challenges to growth are the security and scalability of all-new connected devices and the adherence to open standards to facilitate large-scale monitoring of different systems. Source: Export opportunities of the Dutch ICT sector to Germany (25-04-17), PDF, 95 pp., no opt-in

  • According to  Variant Market Research, the Global Internet of Things (IoT) market is estimated to reach $1,599T by 2024, from $346.1B in 2016, attaining a CAGR of 21.1% from 2016 to 2024. Asia-Pacific is predicted to grow at the fastest CAGR over the forecast period 2016 to 2024. The growth is attributed to increasing adoption of IoT in emerging countries such as India and China, high rate of mobile and internet usage, and development of next-generation technologies. Source: Global Internet of Things (IoT) Market: Rising Adoption of Cloud Platform Noticed by Variant Market Research. 

  • Discrete Manufacturing, Transportation and Logistics, and Utilities will lead all industries in IoT spending by 2020, averaging $40B each. Improving the accuracy, speed, and scale of supply chains is an area many organizations are concentrating on with IoT. IoT has the potential to redefine quality management, compliance, traceability and Manufacturing Intelligence. Business-to-Consumer (B2C) companies are projected to spend $25B on IoT in 2020, up from $5B in 2015. The following graphic compares global spending by vertical between 2015 and 2020. Source: Statista, Spending on the Internet of Things worldwide by vertical in 2015 and 2020 (in billion U.S. dollars).

 

  • By 2020, 50% of IoT spending will be driven by discrete manufacturing, transportation, and logistics, and utilities BCG predicts that IoT will have the most transformative effect on industries that aren’t technology-based today. The most critical success factor all these use cases depend on secure, scalable and reliable end-to-end integration solutions that encompass on-premise, legacy and cloud systems, and platforms.Source: Internet Of Things Market To Reach $267B By 2020.

  • The hottest application areas for IoT in manufacturing include Industrial Asset Management, Inventory and Warehouse Management and Supply Chain Management. In high tech manufacturing, Smart Products, and Industrial Asset Management are the hottest application areas. The following Forrester heat Map for 2017 shows the fastest growing areas of IoT adoption by industry. Source: IoT Opportunities, Trends, and Momentum Robert E Stroud CGEIT CRISC.

  • B2B spending on IoT technologies, apps and solutions will reach €250B ($296.8B) by 2020 according to a recent study by Boston Consulting Group (BCG). IoT Analytics spending is predicted to generate €20B ($23.7B) by 2020. Between 2015 to 2020, BCG predicts revenue from all layers of the IoT technology stack will have attained at least a 20% Compound Annual Growth Rate (CAGR). B2B customers are the most focused on services, IoT analytics, and applications, making these two areas of the technology stack the fastest growing. By 2020, these two layers will have captured 60% of the growth from IoT. Source: Internet Of Things Market To Reach $267B By 2020.

  • Manufacturers most relied on the Industrial Internet of Things (IIoT) in 2017 to help better understand machine health (32%) on the shop floor, leading to more accurate Overall Equipment Effectiveness (OEE) measurements. Changing how plant maintenance personnel will work and interact with all levels of operation (29.5%) and helping to better prevent and predict shutdowns (27.1%) are the top three use cases of IIoT according to Plant Engineering and Statista. 

  • Improving customer experiences (70%) and safety (56%) are the two areas enterprises are using data generated from IoT solutions most often today. Gaining cost efficiencies, improving organizational capabilities, and gaining supply chain visibility (all 53%) is the third most popular uses of data generated from IoT solutions today. 53% of enterprises expect data from IoT solutions to increase revenues in the next year. 53% expect data generated from their IoT solutions will assist in increasing revenues in the next year. 51% expect data from IoT solutions will open up new markets in the next year. 42% of enterprises are spending an average of $3.1M annually on IoT. Source: 70% Of Enterprises Invest In IoT To Improve Customer Experiences.

  • McKinsey Global Institute estimates IoT could have an annual economic impact of $3.9T to $11.1T by 2025. Their forecast scenario includes diverse settings and use cases including factories, cities, retail environments, and the human body. Factories alone could contribute between $1.2T to $3.7T in IoT-driven value. Source: McKinsey & Company, What’s New With The Internet of Things?

  • Business Intelligence Competency Centers (BICC), R&D, Marketing & Sales and Strategic Planning are most likely to see the importance of IoT. Finance is considered among the least likely departments to see the importance of IoT. The study also found that sales analytics apps are increasingly relying on IoT technologies as foundational components of their core application platforms.These and many other insights are from Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study. The study defines IoT as the network of physical objects, or “things,” embedded with electronics, software, sensors, and connectivity to enable objects to collect and exchange data. The study examines key related technologies such as location intelligence, end-user data preparation, cloud computing, advanced and predictive analytics, and big data analytics. Please see page 11 of the study for details regarding the methodology.

  • Manufacturing, Consulting, Business Services and Distribution/Logistics are IoT industry adoption leaders. Conversely, Federal Government, State & Local Government are least likely to prioritize IoT initiatives as very important or critical. IoT early adopters are most often defining goals with clear revenue and competitive advantages to drive initiatives. Manufacturing, Consulting, Business Services and Distribution/Logistics are challenging, competitive industries where revenue growth is often tough to achieve. IoT initiatives that deliver revenue and competitive strength quickly are the most likely to get funding and support. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • IoT advocates or early adopters say location intelligence, streaming data analysis, and cognitive BI to deliver the greatest business benefit. Conversely, IoT early adopters aren’t expecting to see as significant of benefits from data warehousing as they are from other technologies. Consistent with previous studies, both the broader respondent base and IoT early adopters place a high priority on reporting and dashboards. IoT early adopters also see the greater importance of visualization and end-user self-service. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • Business Intelligence Competency Centers (BICC), Manufacturing and Supply Chain are among the most powerful catalysts of BI and IoT adoption in the enterprise. The greater the level of BI adoption across the 12 functional drivers of BI adoption defined in the graphic below, the greater the potential for IoT to deliver differentiated value based on unique needs by area. Marketing, Sales and Strategic Planning are also strong driver areas among IoT advocates or early adopters. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • IoT early adopters are relying on growing revenue and increasing competitive advantage as the two main goals to drive IoT initiatives’ success. The most successful IoT advocates or early adopters evangelize the many benefits of IoT initiatives from a revenue growth position first. IoT early adopters are more likely to see and promote the value of better decision-making, improved operational efficiencies, increased competitive advantage, growth in revenues, and enhanced customer service when BI adoption excels, setting the foundation for IoT initiatives to succeed. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • The most popular feature requirements for advanced and predictive analytics applications include regression models, textbook statistical functions, and hierarchical clustering. More than 90% of respondents replied that these three leading features are “somewhat important” to their daily use of analytics. Geospatial analysis (highly associated with mapping, populations, demographics, and other Web-generated data), recommendation engines, Bayesian methods, and automatic feature selection is the next most required series of features. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • 74% of IoT advocates or early adopters say location intelligence is critical or very important. Conversely, only 26% of the overall sample ranks location intelligence at the same level of importance. One of the most promising use cases for IoT-based location intelligence is its potential to streamline traceability and supply chain compliance workflows in highly regulated manufacturing industries. In 2018, expect to see ERP and Supply Chain Management (SCM) software vendors launch new applications that capitalize on IoT location intelligence to streamline traceability and supply chain compliance on a global scale. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

Sources:

10 Predictions For The Internet Of Things (IoT) In 2018

2017 Internet Of Things (IoT) Intelligence Update

Bain Insights, Three Ways Telcos Can Win On The Internet Of Things [Infographic]

Bain Insights: Choosing The Right Platform For The Internet Of Things

Big Data & Analytics Is The Most Wanted Expertise By 75% Of IoT Providers

Cambridge Consultants, Review of latest developments in the Internet of Things, 7 March 2017, 143 pp., free, no opt-in.

Cognizant Trend Study: Digital Industrial Transformation with the Internet of Things: How can European companies benefit from IoT?

Ernst & Young,  Internet of Things Human-machine interactions that unlock possibilities –  Media & Entertainment. 24 pp., PDF, no opt-in.

GrowthEnabler, Market Pulse Report, Internet of Things (IoT), 19 pp., PDF, free, no opt-in

IDC, Worldwide Spending on the Internet of Things Forecast to Reach Nearly $1.4 Trillion in 2021, According to New IDC Spending Guide

IHS Markit IoT Trend Watch 2017, pdf, 26 pp., free, no opt-in

Internet Of Things Market To Reach $267B By 2020

Internet Of Things Will Revolutionize Retail

PwC, Leveraging the Upcoming Disruptions from AI and IoT, 20 pp., PDF, free, no opt-in

McKinsey & Company, Beyond The Supercycle: How Technology Is Reshaping Resources

McKinsey & Company,  Digital machinery: How companies can win the changing manufacturing game

McKinsey & Company, Taking the pulse of enterprise IoT

McKinsey & Company, What’s New With The Internet of Things?

IoT: Landscape and Nasscom Initiatives, May 2017. 36 pp., PDF, free, no opt-in

Stanford University Course EE392B, Industrial IoT: Applications Overview April 4, 2017, Dimitry Gorinevsky

Verizon, State of the Market: Internet of Things 2017 Making way for the enterprise

What Makes An Internet Of Things (IoT) Platform Enterprise-Ready?

Woodside Capital Partners, The Industrial Internet of Things: Making Factories “Smart” For The Next Industrial Revolution, PDF, 126 pp., free, no opt-in

THE INTERNET OF THINGS 2017 REPORT: How the IoT is improving lives to transform the world

The IoT Platforms Report: How software is helping the Internet of Things evolve

 

 

 

 

%d bloggers like this: