Skip to content

Posts from the ‘Cloud Computing’ Category

10 Charts That Will Change Your Perspective Of Amazon Prime’s Growth

    • 70% of Americans with incomes of $150,000 or more who shop online have Amazon Prime memberships.
    • Amazon Prime international customers will grow at a 56% compound annual growth rate (CAGR) between 2016 to 2018.
    • Amazon shipped more than 5 billion items in 2017 with Prime worldwide.
    • By 2022 there will be 56 million Amazon Prime Video subscribers in the U.S., and 122 million worldwide.

Net Sales at Amazon reached $177.9B in 2017, a 31% increase from $136B in 2016 and Net Income increased from $2.4B in 2016 to $3B in 2017. Their fourth quarter, 2017 financial results are available here. Their latest financial results also reflect how increasing operating expenses are squeezing margins as the company builds out their fulfillment network in international markets, technology, content, and marketing efforts.

Amazon Prime is an annual membership program that includes unlimited free shipping of over 100 million items, access to unlimited instant streaming of thousands of movies and TV episodes, Alexa voice shopping, unlimited free access to thousands of Kindle books and content. Amazon Prime also includes free same day delivery on selected products, in addition to planned services Amazon is fine-tuning for launch later this year.

Revenue for online subscriptions to services like its Amazon Prime membership, Audible, Prime Video, and Prime Music Unlimited was up 49% year over year, handily outpacing the 20% year-over-year revenue growth from its online store segment. In January 2018 Amazon raised the price for Prime membership $2 to $12.99 for customers making monthly payments, totaling $156 per year. Amazon chose to leave the Prime membership price at $99 for those customers choosing to make one annual payment. Investment firm Cowen & Company estimates the $2 price increase to Prime subscribers who pay monthly will generate an additional $300M in revenue.

The following ten charts provide insights into Amazon Primes’ explosive growth:

  • 51% of U.S. households will be Amazon Prime subscribers in 2018, up from 45% in 2017 with Prime subscribers spending up to 4.6X more than non-prime customers. Morgan Stanley estimates that the average Amazon Prime customer spent $2,486 over the last twelve months compared to $544 for non-Prime Amazon customers. Source: Amazon Disruption Symposium Where so Far? Where to Next? Who is Safe?, Morgan Stanley, September 18, 2017. (PDF, 88 pp., no opt-in).

  • There are an estimated 90 million paying Amazon Prime subscribers in the United States today according to Consumer Intelligence Research Partners and Statista. Amazon was able to grow Prime memberships from 63 million in June 2016 to 90 million in September of last year. From just 25 million members in December 2013 to 90 million in September of last year, Amazon has been able to attain a 29.2% CAGR of subscribers over the last five years. Statista found that Amazon Prime members spend an average of $1,300 per year compared to non-Prime members who spend $700 annually. Source: Statista.   

  • 70% of Americans with incomes of $150,000 or more who shop online have Amazon Prime memberships. Alexa, Echo, Dash, IoT, Smart Home and Prime Now delivery services are predicated on attracting and retaining Prime customers who have higher disposable incomes and are willing to pay for convenience. Amazon realizes the most profitable Prime customers they have are facing a continual time shortage due to demanding jobs and travel schedules. The Prime services roadmap continues to reflect convenience and speed to serve high-income families, many of which have two wage earners, where time is at a premium. Source: Statista.

  • 46% of Amazon Prime subscribers buy something online using the benefits of their subscription at least once a week. In contrast, only 13% of non-Prime Amazon shoppers make weekly purchases. Amazon’s proliferation of services helps to keep Prime customers coming back. Combining a broad services portfolio and real-time convenience on a trusted platform, Amazon has found a way to become indispensable to customers who have high disposable incomes and little extra time. Source: Nearly Half of US Households Are Now Amazon Prime Subscribers, eMarketer Retail. January 30, 2018.

  • Amazon Prime international customers will grow at a 56% compound annual growth rate (CAGR) between 2016 to 2018, growing over two times as fast as the S. Prime customer base while expectations of shorter delivery times increase. Morgan Stanley estimates there will be 62 million U.S.-based Amazon Prime customers by the end of 2018, growing from an estimated 54 million in 2017. International Prime subscribers are projected to grow from 18 million in 2018 to 45 million in 2018. Source: Amazon Disruption Symposium Where so Far? Where to Next? Who is Safe?, Morgan Stanley, September 18, 2017. (PDF, 88 pp., no opt-in).

  • By 2022 there will be 56 million Amazon Prime Video subscribers alone in the U.S., and 122 million worldwide. Within four years it’s projected that Amazon Prime Video will grow its customer base globally to 122 million subscribers, with 45.9% from the U.S. alone. Amazon’s Source: Statista.

  • Amazon Prime Video is the primary growth catalyst for Amazon to gain new subscribers in Japan, Germany, and the UK. Amazon Prime membership jumped 16% in Japan in just three months following the launch of Prime Instant Video. Prime subscriber rates increased in the UK and Germany with the introduction of Prime Instant Video. Source: Amazon Disruption Symposium Where so Far? Where to Next? Who is Safe?, Morgan Stanley, September 18, 2017. (PDF, 88 pp., no opt-in).

  • 63% of Amazon online shopping users are also subscribers to Amazon Prime today. Gaining new Prime subscribers from existing online users have started to slow down compared to other areas of Amazon Prime growing at double-digit growth rates. Amazon’s strategy of broadening the base of services and devices including Alexa to attract new subscribers shows signs of working according to their latest financial results. Source: Statista.

  • Amazon Prime has 3.4 times the number of customers acquired Whole Foods Market has and is changing the pricing and profitability of food retailing now. Amazon is actively re-ordering the food retailing landscape by capitalizing on the scale of their operations in the supply chain, logistics and fulfillment operations. Morgan Stanley found that the primary reason customers aren’t shopping at Whole Foods Markets is the perception of lower prices elsewhere. Amazon’s selective reduction of prices at Whole Foods Markets is margin-driven today. Source: Amazon Disruption Symposium Where so Far? Where to Next? Who is Safe?, Morgan Stanley, September 18, 2017. (PDF, 88 pp., no opt-in).

  • Amazon is combining Prime Now 1 to 2-hour deliveries and Whole Foods Market local inventory to fuel and scale a profitable grocery delivery business. One of the most attractive benefits of Prime membership is the flexibility of ordering products for 1 to 2-hour By increasing the variety of products deliverable by the Prime Now service, Amazon is scaling its home delivery business profitably. Source: Amazon Disruption Symposium Where so Far? Where to Next? Who is Safe?, Morgan Stanley, September 18, 2017. (PDF, 88 pp., no opt-in).

Data Sources on Amazon Prime and their latest reported financial results:

Amazon Disruption Symposium Where so Far? Where to Next? Who is Safe?, Morgan Stanley, September 18, 2017. (PDF, 88 pp., no opt-in)

Amazon has around 80 million reasons to be excited for Prime Day, Business Insider. July 10, 2017

Amazon hikes the price of Prime monthly memberships by 18%, CNN, January 19, 2018

Amazon nipping at Netflix’s heels, IHS Markit, January 16, 2018

Amazon Prime Had A Ridiculously Good 2017, Slash Gear January 2, 2018

Amazon Prime had its best year of sign-ups ever, Quartz, Alison Griswold.

Amazon Prime Hits 90 Million US Members, Consumer Intelligence Research Partners, October 18, 2017 (PDF, 22 pp., no opt-in)

Amazon Prime’s Monthly Price Hike Will Generate $300 Million a Year, Bloomberg & Company, January 22, 2018

Don’t Overlook These Metrics From, Inc.’s Fourth Quarter, NASDAQ. February 10, 2018

For the wealthiest Americans, Amazon Prime has become the norm, Recode, June 8, 2017

Here’s How Much Amazon Prime Customers Spend Per Year, Fortune, October 18, 2017

Nearly Half of US Households Are Now Amazon Prime Subscribers, eMarketer Retail, January 30, 2018

Number of Amazon Prime Video subscribers worldwide in selected countries in 2022 (in millions), Statista, 2018.

Pros and Cons of Amazon Prime, Consumer Reports, February 22, 2018

Sixty-Four Percent Of U.S. Households Have Amazon Prime, Forbes, June 17, 2017

Why Amazon Bought Whole Foods, The Atlantic, June 16, 2017


10 Ways Machine Learning Is Revolutionizing Marketing


  • 84% of marketing organizations are implementing or expanding AI and machine learning in 2018.
  • 75% of enterprises using AI and machine learning enhance customer satisfaction by more than 10%.
  • 3 in 4 organizations implementing AI and machine learning increase sales of new products and services by more than 10% according to Capgemini.

Measuring marketing’s many contributions to revenue growth is becoming more accurate and real-time thanks to analytics and machine learning. Knowing what’s driving more Marketing Qualified Leads (MQLs), Sales Qualified Leads (SQL), how best to optimize marketing campaigns, and improving the precision and profitability of pricing are just a few of the many areas machine learning is revolutionizing marketing.

The best marketers are using machine learning to understand, anticipate and act on the problems their sales prospects are trying to solve faster and with more clarity than any competitor. Having the insight to tailor content while qualifying leads for sales to close quickly is being fueled by machine learning-based apps capable of learning what’s most effective for each prospect and customer. Machine learning is taking contextual content,  marketing automation including cross-channel marketing campaigns and lead scoring, personalization, and sales forecasting to a new level of accuracy and speed.

The strongest marketing departments rely on a robust set of analytics and Key Performance Indicators (KPIs) to measure their progress towards revenue and customer growth goals. With machine learning, marketing departments will be able to deliver even more significant contributions to revenue growth, strengthening customer relationships in the process.

The following are 10 ways machine learning is revolutionizing marketing today and in the future:

  1. 57% of enterprise executives believe the most significant growth benefit of AI and machine learning will be improving customer experiences and support. 44% believe that AI and machine learning will provide the ability to improve on existing products and services. Marketing departments and the Chief Marketing Officers (CMOs) running them are the leaders devising and launching new strategies to deliver excellent customer experiences and are one of the earliest adopters of machine learning. Orchestrating every aspect of attracting, selling and serving customers is being improved by marketers using machine learning apps to more accurately predict outcomes. Source: Artificial Intelligence: What’s Possible for Enterprises In 2017 (PDF, 16 pp., no opt-in), Forrester, by Mike Gualtieri, November 1, 2016. Courtesy of The Stack.

  1. 58% of enterprises are tackling the most challenging marketing problems with AI and machine learning first, prioritizing personalized customer care, new product development. These “need to do” marketing areas have the highest complexity and highest benefit. Marketers haven’t been putting as much emphasis on the “must do” areas of high benefit and low complexity according to Capgemini’s analysis. These application areas include Chatbots and virtual assistants, reducing revenue churn, facial recognition and product and services recommendations. Source:  Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting. 2017. (PDF, 28 pp., no opt-in).

  1. By 2020, real-time personalized advertising across digital platforms and optimized message targeting accuracy, context and precision will accelerate. The combined effect of these marketing technology improvements will increase sales effectiveness in retail and B2C-based channels. Sales Qualified Lead (SQL) lead generation will also increase, potentially reducing sales cycles and increasing win rates. Source: Can Machines be Creative? How Technology is Transforming Marketing Personalization and Relevance, IDC White Paper Sponsored by Gerry Brown, July 2017.

  1. Analyze and significantly reduce customer churn using machine learning to streamline risk prediction and intervention models. Instead of relying on expensive and time-consuming approaches to minimize customer churn, telecommunications companies and those in high-churn industries are turning to machine learning. The following graphic illustrates how defining risk models help determine how actions aimed at averting churn affect churn impact probability and risk. An intervention model allows marketers to consider how the level of intervention could affect the probability of churn and the amount of customer lifetime value (CLV). Source: Analyzing Customer Churn by using Azure Machine Learning.

  1. Price optimization and price elasticity are growing beyond industries with limited inventories including airlines and hotels, proliferating into manufacturing and services. All marketers are increasingly relying on machine learning to define more competitive, contextually relevant pricing. Machine learning apps are scaling price optimization beyond airlines, hotels, and events to encompass product and services pricing scenarios. Machine learning is being used today to determine pricing elasticity by each product, factoring in channel segment, customer segment, sales period and the product’s position in an overall product line pricing strategy. The following example is from Microsoft Azure’s Interactive Pricing Analytics Pre-Configured Solution (PCS). Source: Azure Cortana Interactive Pricing Analytics Pre-Configured Solution.

  1. Improving demand forecasting, assortment efficiency and pricing in retail marketing have the potential to deliver a 2% improvement in Earnings Before Interest & Taxes (EBIT), 20% stock reduction and 2 million fewer product returns a year. In Consumer Packaged Goods (CPQ) and retail marketing organizations, there’s significant potential for AI and machine learning to improve the entire value chain’s performance. McKinsey found that using a concerted approach to applying AI and machine learning across a retailer’s value chains has the potential to deliver a 50% improvement of assortment efficiency and a 30% online sales increase using dynamic pricing. Source:  Artificial Intelligence: The Next Frontier? McKinsey Global Institute (PDF, 80 pp., no opt-in)

  1. Creating and fine-tuning propensity models that guide cross-sell and up-sell strategies by product line, customer segment, and persona. It’s common to find data-driven marketers building and using propensity models to define the products and services with the highest probability of being purchased. Too often propensity models are based on imported data, built in Microsoft Excel, making their ongoing use time-consuming. Machine learning is streamlining creation, fine-tuning and revenue contributions of up-sell and cross-sell strategies by automating the entire progress. The screen below is an example of a propensity model.

  1. Lead scoring accuracy is improving, leading to increased sales that are traceable back to initial marketing campaigns and sales strategies. By using machine learning to qualify the further customer and prospect lists using relevant data from the web, predictive models including machine learning can better predict ideal customer profiles. Each sales lead’s predictive score becomes a better predictor of potential new sales, helping sales prioritize time, sales efforts and selling strategies. The following two slides are from an excellent webinar Mintigo hosted with Sirius Decisions and Sales Hacker. It’s a fascinating look at how machine learning is improving sales effectiveness. Source: Give Your SDRs An Unfair Advantage with Predictive (webinar slides on Slideshare).

  1. Identifying and defining the sales projections of specific customer segments and microsegments using RFM (recency, frequency and monetary) modeling within machine learning apps is becoming pervasive. Using RFM analysis as part of a machine learning initiative can provide accurate definitions of the best customers, most loyal, biggest spenders, almost lost, lost customers and lost cheap customers.
  2. Optimizing the marketing mix by determining which sales offers, incentive and programs are presented to which prospects through which channels is another way machine learning is revolutionizing marketing. Specific sales offers are created supported by contextual content, offers, and incentives. These items are made available to an optimization engine which uses machine learning logic to continually try to predict the best combination of marketing mix elements that will lead to a new sale, up-sell or cross-sell. Amazon’s product recommendation feature is an example of how their e-commerce site is using machine learning to increase up-sell, cross-sell and recommended products revenue.

Data Sources On Machine Learning’s Impact On Marketing:

4 Ways to Use Machine Learning in Marketing Automation, Medium, March 30, 2017

84 percent of B2C marketing organizations are implementing or expanding AI in 2018. Infographic. Amplero.
AI, Machine Learning, and their Application for Growth, Adelyn Zhou. SlideShare/LinkedIn.  Feb. 8, 2018.

AI: The Next Generation of Marketing Driving Competitive Advantage throughout the Customer Life Cycle (PDF, 10 pp., no opt-in), Forrester, February 2017.

An Executive’s Guide to Machine Learning, McKinsey Quarterly. June 2015.

Artificial Intelligence for Marketers 2018: Finding Value beyond the Hype, eMarketer. (PDF, 20 pp., no opt-in). October 2017

Artificial Intelligence: The Next Frontier? McKinsey Global Institute (PDF, 80 pp., no opt-in)

Artificial Intelligence: The Ultimate Technological Disruption Ascends, Woodside Capital Partners. (PDF, 111 pp., no opt-in). January 2017.

AWS Announces Amazon Machine Learning Solutions Lab, Marketing Technology Insights

B2B Predictive Marketing Analytics Platforms: A Marketer’s Guide, (PDF, 36 pp., no opt-in) Marketing Land Research Report.
Four Use Cases of Machine Learning in Marketing, June 28, 2018, Martech Advisor,
How Artificial Intelligence and Machine Learning Will Reshape Small Businesses, SMB Group (PDF, 8 pp., no opt-in) May 2017.

How Machine Learning Helps Sales Success (PDF, 12 pp., no opt-in) Cognizant

Inside Salesforce Einstein Artificial Intelligence A Look at Salesforce Einstein Capabilities, Use Cases and Challenges, Doug Henschen, Constellation Research, February 15, 2017

Machine Learning for Marketers (PDF, 91 pp., no opt-in) iPullRank

Machine Learning Marketing – Expert Consensus of 51 Executives and Startups, TechEmergence. May 15, 2017.

Marketing & Sales Big Data, Analytics, and the Future of Marketing & Sales, (PDF, 60 pp., no opt-in), McKinsey & Company.

Sizing the prize – What’s the real value of AI for your business and how can you capitalize? (PDF, 32 pp., no opt-in) PwC, 2017.

The New Frontier of Price Optimization, MIT Technology Review. September 07, 2017.

The Power Of Customer Context, Forrester (PDF, 20 pp., no opt-in) Carlton A. Doty, April 14, 2014. Provided courtesy of Pegasystems.

Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting. 2017. (PDF, 28 pp., no opt-in)

Using machine learning for insurance pricing optimization, Google Cloud Big Data and Machine Learning Blog, March 29, 2017

What Marketers Can Expect from AI in 2018, Jacob Shama. Mintigo. January 16, 2018.

Roundup Of Machine Learning Forecasts And Market Estimates, 2018

  • Machine learning patents grew at a 34% Compound Annual Growth Rate (CAGR) between 2013 and 2017, the third-fastest growing category of all patents granted.
  • International Data Corporation (IDC) forecasts that spending on AI and ML will grow from $12B in 2017 to $57.6B by 2021.
  • Deloitte Global predicts the number of machine learning pilots and implementations will double in 2018 compared to 2017, and double again by 2020.

These and many other fascinating insights are from the latest series of machine learning market forecasts, market estimates, and projections. Machine learning’s potential impact across many of the world’s most data-prolific industries continues to fuel venture capital investment, private equity (PE) funding, mergers, and acquisitions all focused on winning the race of Intellectual Property (IP) and patents in this field. One of the fastest growing areas of machine learning IP is the development of custom chipsets. Deloitte Global is predicting up to 800K machine learning chips will be in use across global data centers this year. Enterprises are increasing their research, investment, and piloting of machine learning programs in 2018. And while the methodologies all vary across the many sources of forecasts, market estimates, and projections, all reflect how machine learning is improving the acuity and insights of companies on how to grow faster and more profitably. Key takeaways from the collection of machine learning market forecasts, market estimates and projections include the following:

  • Within the Business Intelligence (BI) & analytics market, Data Science platforms that support machine learning are predicted to grow at a 13% CAGR through 2021. Data Science platforms will outperform the broader BI & analytics market, which is predicted to grow at an 8% CAGR in the same period. Data Science platforms will grow in value from $3B in 2017 to $4.8B in 2021. Source: An Investors’ Guide to Artificial Intelligence, J.P. Morgan. November 27, 2017 (110 pp., PDF, no opt-in).

  • Machine learning patents grew at a 34% Compound Annual Growth Rate (CAGR) between 2013 and 2017, the third-fastest growing category of all patents granted. IBM, Microsoft, Google, LinkedIn, Facebook, Intel, and Fujitsu were the seven biggest ML patent producers in 2017. Source: IFI Claims Patent Services (Patent Analytics) 8 Fastest Growing Technologies SlideShare Presentation.

  • 61% of organizations most frequently picked Machine Learning / Artificial Intelligence as their company’s most significant data initiative for next year. Of those respondent organizations indicating they actively use Machine Learning (ML) and Artificial Intelligence (AI), 58% percent indicated they ran models in production. Source: 2018 Outlook: Machine Learning and Artificial Intelligence, A Survey of 1,600+ Data Professionals (14 pp., PDF, no opt-in).

  • Tech market leaders including Amazon, Apple, Google, Tesla, and Microsoft are leading their industry sectors by a wide margin in machine learning (ML) and AI investment. Each is designing ML into future-generation products and using ML and AI to improve customer experiences and improve the efficiency of selling channels. Source: Will You Embrace AI Fast Enough? AT Kearney, January 2018.

  • Deloitte Global predicts the number of machine learning pilots and implementations will double in 2018 compared to 2017, and double again by 2020. Factors driving the increasing pace of ML pilots include more pervasive support of Application Program Interfaces (APIs), automating data science tasks, reducing the need for training data, accelerating training and greater insight into explaining results. Source: Deloitte Global Predictions 2018 Infographics.

  • 60% of organizations at varying stages of machine learning adoption, with nearly half (45%) saying the technology has led to more extensive data analysis & insights. 35% can complete faster data analysis and increased the speed of insight, delivering greater acuity to their organizations. 35% are also finding that machine learning is enhancing their R&D capabilities for next-generation products. Source: Google & MIT Technology Review study: Machine Learning: The New Proving Ground for Competitive Advantage (10 pp., PDF, no opt-in).

  • McKinsey estimates that total annual external investment in AI was between $8B to $12B in 2016, with machine learning attracting nearly 60% of that investment. McKinsey estimates that total annual external investment in AI was between $8B to $12B in 2016, with machine learning attracting nearly 60% of that investment. Robotics and speech recognition are two of the most popular investment areas. Investors are most favoring machine learning startups due to quickness code-based start-ups have at scaling up to include new features fast. Software-based machine learning startups are preferred over their more cost-intensive machine-based robotics counterparts that often don’t have their software counterparts do. As a result of these factors and more, Corporate M&A is soaring in this area. The following graphic illustrates the distribution of external investments by category from the study. Source: McKinsey Global Institute Study, Artificial Intelligence, The Next Digital Frontier (80 pp., PDF, free, no opt-in).

  • Deloitte Global is predicting machine learning chips used in data centers will grow from a 100K to 200K run rate in 2016 to 800K this year. At least 25% of these will be Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASICs). Deloitte found the Total Available Market (TAM) for Machine Learning (ML) Accelerator technologies could potentially reach $26B by 2020. Source: Deloitte Global Predictions 2018.

  • Amazon is relying on machine learning to improve customer experiences in key areas of their business including product recommendations, substitute product prediction, fraud detection, meta-data validation and knowledge acquisition. For additional details, please see the presentation, Machine Learning At Amazon, Amazon Web Services (47 pp., PDF no opt-in).

Sources of Market Data on Machine Learning:

2018 Outlook: Machine Learning and Artificial Intelligence, A Survey of 1,600+ Data Professionals. MEMSQL. (14 pp., PDF, no opt-in)

Advice for applying Machine Learning, Andrew Ng, Stanford University. (30 pp., PDF, no opt-in)

An Executive’s Guide to Machine Learning, McKinsey Quarterly. June 2015

An Investors’ Guide to Artificial Intelligence, J.P. Morgan. November 27, 2017 (110 pp., PDF, no opt-in)

Artificial intelligence and machine learning in financial services Market developments and financial stability implications, Financial Stability Board. (45 pp., PDF, no opt-in)

Big Data and AI Strategies Machine Learning and Alternative Data Approach to Investing, J.P. Morgan. (280 pp., PDF. No opt-in).

Google & MIT Technology Review study: Machine Learning: The New Proving Ground for Competitive Advantage (10 pp., PDF, no opt-in).

Hitting the accelerator: the next generation of machine-learning chips, Deloitte. (6 pp., PDF, no opt-in).

How Do Machines Learn? Algorithms are the Key to Machine Learning. Booz Allen Hamilton. (Infographic)

IBM Predicts Demand For Data Scientists Will Soar 28% By 2020, Forbes. May 13, 2017

Machine Learning At Amazon, Amazon Web Services (47 pp., PDF no opt-in).

Machine Learning Evolution (infographic). PwC. April 17, 2017 Machine learning: things are getting intense. Deloitte (6 pp., PDF. No opt-in)

Machine Learning: The Power and Promise Of Computers That Learn By Example. The Royal Society’s Machine Learning Project (128 pp., PDF, no opt-in)

McKinsey Global Institute StudyArtificial Intelligence, The Next Digital Frontier (80 pp., PDF, free, no opt-in)

McKinsey’s State Of Machine Learning And AI, 2017, Forbes, July 9, 2017

Predictions 2017: Artificial Intelligence Will Drive The Insights Revolution. Forrester, November 2, 2016 (9 pp., PDF, no opt-in)

Risks And Rewards: Scenarios around the economic impact of machine learning, The Economist Intelligence Unit. (80 pp., PDF, no opt-in)

Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? Digital/McKinsey & Company. (52 pp., PDF, no opt-in)

So What Is Machine Learning Anyway?  Business Insider. Nov. 23, 2017

The 10 Most Innovative Companies In AI/Machine Learning 2017, Wired

The Business Impact and Use Cases for Artificial Intelligence. Gartner (28 pp., PDF, no opt-in)

The Build-Or-Buy Dilemma In AIBoston Consulting Group. January 4, 2018.

The Next Generation of Medicine: Artificial Intelligence and Machine Learning, TM Capital (25 pp., PDF, free, opt-in)

The Roadmap to Enterprise AI, Rage Networks Brief based on Gartner research. (17 pp., PDF, no opt-in)

Will You Embrace AI Fast Enough? AT Kearney. January 2018


Machine Learning’s Greatest Potential Is Driving Revenue In The Enterprise

  • Enterprise investments in machine learning will nearly double over the next three years, reaching 64% adoption by 2020.
  • International Data Corporation (IDC) is forecasting spending on artificial intelligence (AI) and machine learning will grow from $8B in 2016 to $47B by 2020.
  • 89% of CIOs are either planning to use or are using machine learning in their organizations today.
  • 53% of CIOs say machine learning is one of their core priorities as their role expands from traditional IT operations management to business strategists.
  • CIOs are struggling to find the skills they need to build their machine learning models today, especially in financial services.

These and many other insights are from the recently published study, Global CIO Point of View. The entire report is downloadable here (PDF, 24 pp., no opt-in). ServiceNow and Oxford Economics collaborated on this survey of 500 CIOs in 11 countries on three continents, spanning 25 industries. In addition to the CIO interviews, leading experts in machine learning and its impact on enterprise performance contributed to the study. For additional details on the methodology, please see page 4 of the study and an online description of the CIO Survey Methodology here.

Digital transformation is a cornerstone of machine learning adoption. 72% of CIOs have responsibility for digital transformation initiatives that drive machine learning adoption. The survey found that the greater the level of digital transformation success, the more likely machine learning-based programs and strategies would succeed. IDC predicts that 40% of digital transformation initiatives will be supported by machine learning and artificial intelligence by 2019.

Key takeaways from the study include the following:

  • 90% of CIOs championing machine learning in their organizations today expect improved decision support that drives greater topline revenue growth. CIOs who are early adopters are most likely to pilot, evaluate and integrate machine learning into their enterprises when there is a clear connection to driving business results. Many CIO compensation plans now include business growth and revenue goals, making the revenue potential of new technologies a high priority.
  • 89% of CIOs are either planning to use or using machine learning in their organizations today. The majority, 40%, are in the research and planning phases of deployment, with an additional 26% piloting machine learning. 20% are using machine learning in some areas of their business, and 3% have successfully deployed enterprise-wide. The following graphic shows the percentage of respondents by stage of their machine learning journey.

  • Machine learning is a key supporting technology leading the majority Finance, Sales & Marketing, and Operations Management decisions today. Human intervention is still required across the spectrum of decision-making areas including Security Operations, Customer Management, Call Center Management, Operations Management, Finance and Sales & Marketing. The study predicts that by 2020, machine learning apps will have automated 70% of Security Operations queries and 30% of Customer Management ones.

  • Automation of repetitive tasks (68%), making complex decisions (54%) and recognizing data patterns (40%) are the top three most important capabilities CIOs of machine learning CIOs are most interested in.  Establishing links between events and supervised learning (both 32%), making predictions (31%) and assisting in making basic decisions (18%) are additional capabilities CIOs are looking for machine learning to accelerate. In financial services, machine learning apps are reviewing loan documents, sorting applications to broad parameters, and approving loans faster than had been possible before.

  • Machine learning adoption and confidence by CIOs varies by region, with North America in the lead (72%) followed by Asia-Pacific (61%). Just over half of European CIOs (58%) expect value from machine learning and decision automation to their company’s overall strategy. North American CIOs are more likely than others to expect value from machine learning and decision automation across a range of business areas, including overall strategy (72%, vs. 61% in Asia Pacific and 58% in Europe). North American CIOs also expect greater results from sales and marketing (63%, vs. 47% Asia-Pacific and 38% in Europe); procurement (50%, vs. 34% in Asia-Pacific and 34% in Europe); and product development (48%, vs. 29% in Asia-Pacific and 29% in Europe).
  • CIOs challenging the status quo of their organization’s analytics direction are more likely to rely on roadmaps for defining and selling their vision of machine learning’s revenue contributions. More than 70% of early adopter CIOs have developed a roadmap for future business process changes compared with just 33% of average CIOs. Of the CIOs and senior management teams in financial services, the majority are looking at how machine learning can increase customer satisfaction, lifetime customer value, improving revenue growth. 53% of CIOs from our survey say machine learning is one of their core priorities as their role expands from traditional IT operations to business-wide strategy.

Sources: CIOs Cutting Through the Hype and Delivering Real Value from Machine Learning, Survey Shows

Data Scientist Is The Best Job In America According Glassdoor

  • Data Scientist has been named the best job in America for three years running, with a median base salary of $110,000 and 4,524 job openings.
  • DevOps Engineer is the second-best job in 2018, paying a median base salary of $105,000 and 3,369 job openings.
  • There are 29,187 Software Engineering jobs available today, making this job the most popular regarding Glassdoor postings according to the study.

These and many other fascinating insights are from Glassdoor’s 50 Best Jobs In America For 2018. The Glassdoor Report is viewable online here. Glassdoor’s annual report highlights the 50 best jobs based on each job’s overall Glassdoor Job Score.The Glassdoor Job Score is determined by weighing three key factors equally: earning potential based on median annual base salary, job satisfaction rating, and the number of job openings. Glassdoor’s 2018 report lists jobs that excel across all three dimensions of their Job Score metric. For an excellent overview of the study by Karsten Strauss of Forbes, please see his post, The Best Jobs To Apply For In 2018.

LinkedIn’s 2017 U.S. Emerging Jobs Report found that there are 9.8 times more Machine Learning Engineers working today than five years ago with 1,829 open positions listed on their site as of last month. Data science and machine learning are generating more jobs than candidates right now, making these two areas the fastest growing tech employment areas today.

Key takeaways from the study include the following:

  • Six analytics and data science jobs are included in Glassdoor’s 50 best jobs In America for 2018. These include Data Scientist, Analytics Manager, Database Administrator, Data Engineer, Data Analyst and Business Intelligence Developer. The complete list of the top 50 jobs is provided below with the analytics and data science jobs highlighted along with software engineering, which has a record 29,817 open jobs today:

  • Median base salary of the 50 best jobs in America is $91,000 with the average salary of the six analytics and data science jobs being $94,167.
  • Across all six analytics and data science jobs there are 16,702 openings as of today according to Glassdoor.
  • Tech jobs make up 20 of Glassdoor’s 50 Best Jobs in America for 2018, up from 14 jobs in 2017.

Source: Glassdoor Reveals the 50 Best Jobs in America for 2018

Analytics Will Revolutionize Supply Chains In 2018

  • While 94% of supply chain leaders say that digital transformation will fundamentally change supply chains in 2018, only 44% have a strategy ready.
  • 66% of supply chain leaders say advanced supply chain analytics are critically important to their supply chain operations in the next 2 to 3 years.
  • Forecast accuracy, demand patterns, product tracking traceability, transportation performance and analysis of product returns are use cases where analytics can close knowledge gaps.

These and other insights are from The Hackett Group study, Analytics: Laying the Foundation for Supply Chain Digital Transformation (10 pp., PDF, no opt-in). The study provides insightful data regarding the increasing importance of using analytics to drive improved supply chain performance. Data included in the study also illustrate how analytics is enabling business objectives across a range of industries. The study also provides the key points that need to be considered in creating a roadmap for implementing advanced supply chain analytics leading to digital transformation. It’s an interesting, insightful read on how analytics are revolutionizing supply chains in 2018 and beyond.

Key takeaways from the study include the following:

  • 66% of supply chain leaders say advanced supply chain analytics are critically important to their supply chain operations in the next 2 to 3 years. The Hackett Group found the majority of supply chain leaders have a sense of urgency for getting advanced supply chain analytics implemented and contributing to current and future operations. The majority see the value of having advanced analytics that can scale across their entire supplier network.

  • Improving forecast accuracy, optimizing transportation performance, improving product tracking & traceability and analyzing product returns are the use cases providing the greatest potential for analytics growth. Each of these use cases and the ones that are shown in the graphic below has information and knowledge gaps advanced supply chain analytics can fill. Of these top use cases, product tracking and traceability are one of the fastest growing due to the stringent quality standards defined by the US Food & Drug Administration in CFR 21 Sec. 820.65 for medical products manufacturers.  The greater the complexity and cost of compliance with federally-mandated reporting and quality standards, the greater potential for advanced analytics to revolutionize supply chain performance.

  • Optimizing production and sourcing to reduce total landed costs (56%) is the most important use case of advanced supply chain analytics in the next 2 to 3 years. The Hackett Group aggregated use cases across the four categories of reducing costs, improving quality, improving service and improving working capital (optimizing inventory). Respondents rank improving working capital (optimizing inventory) with the highest aggregated critical importance score of 39%, followed by reducing costs (29.5%), improving service (28.6%) and improving quality (25.75%).

  • 44% of supply chain leaders are enhancing their Enterprise Resource Planning (ERP) systems’ functionality and integration to gain greater enterprise and supply chain-wide visibility. Respondents are relying on legacy ERP systems as their main systems of record for managing supply chain operations, and integrating advanced supply chain analytics to gain end-to-end supply network visibility. 94% of respondents consider virtual collaboration platforms for internal & external use the highest priority technology initiative they can accomplish in the next 2 to 3 years.

  • The majority of companies are operating at stages 1 and 2 of the Hackett Group’s Supply chain analytics maturity model. A small percentage are at the stage 3 level of maturity according to the study’s results. Supply chain operations and performance scale up the model as processes and workflows are put in place to improve data quality, provide consistent real-time data and rely on a stable system of record that can deliver end-to-end supply chain analytics visibility. Integrating with external data becomes critically important as supply networks proliferate globally, as does the need to drive greater predictive analytics accuracy.

10 Charts That Will Change Your Perspective On Artificial Intelligence’s Growth

  • There has been a 14X increase in the number of active AI startups since 2000.
  • Investment into AI start-ups by venture capitalists has increased 6X since 2000.
  • The share of jobs requiring AI skills has grown 4.5X since 2013.

These and many other fascinating insights are from Stanford University’s inaugural AI Index (PDF, no opt-in, 101 pp.). Stanford has undertaken a One Hundred Year Study on Artificial Intelligence (AI100) looking at the effects of AI on people’s lives, basing the inaugural report and index on the initial findings. The study finds “that we’re essentially “flying blind” in our conversations and decision-making related to Artificial Intelligence.” The AI Index is focused on tracking activity and progress on AI initiatives, and to facilitate informed conversations grounded with reliable, verifiable data. All data used to produce the AI Index and report is available at Please see the AI Index for additional details regarding the methodology used to create each of the following graphs.

The following ten charts from the AI Index report provides insights into AI’s rapid growth:

  • The number of Computer Science academic papers and studies has soared by more than 9X since 1996. Academic studies and research are often the precursors to new intellectual property and patents. The entire Scopus database contains over 200,000 (200,237) papers in the field of Computer Science that have been indexed with the key term “Artificial Intelligence.” The Scopus database contains almost 5 million (4,868,421) papers in the subject area “Computer Science.”

  • There have been a 6X increase in the annual investment levels by venture capital (VC) investors into U.S.-based Ai startups since 2000. Crunchbase, VentureSource, and Sand Hill Econometrics were used to determine the amount of funding invested each year by venture capitalists into startups where AI plays an important role in some key function of the business. The following graphic illustrates the amount of annual funding by VC’s into US AI startups across all funding stages.

  • There has been a 14X increase in the number of active AI startups since 2000. Crunchbase, VentureSource, and Sand Hill Econometrics were also used for completing this analysis with AI startups in Crunchbase cross-referenced to venture-backed companies in the VentureSource database. Any venture-backed companies from the Crunchbase list that were identified in the VentureSource database were included.

  • The share of jobs requiring AI skills has grown 4.5X since 2013., The growth of the share of US jobs requiring AI skills on the platform was calculated by first identifying AI-related jobs using titles and keywords in descriptions. Job growth is a calculated as a multiple of the share of jobs on the Indeed platform that required AI skills in the U.S. starting in January 2013. The study also calculated the growth of the share of jobs requiring AI skills on the platform, by country. Despite the rapid growth of the Canada and UK. AI job markets, reports they are respectively still 5% and 27% of the absolute size of the US AI job market.

  • Machine Learning, Deep Learning and Natural Language Processing (NLP) are the three most in-demand skills on Just two years ago NLP had been predicted to be the most in-demand skill for application developers creating new AI apps. In addition to skills creating AI apps, machine learning techniques, Python, Java, C++, experience with open source development environments, Spark, MATLAB, and Hadoop are the most in-demand skills. Based on an analysis of entries as of today, the median salary is $127,000 in the U.S. for Data Scientists, Senior Data Scientists, Artificial Intelligence Consultants and Machine Learning Managers.

  • Error rates for image labeling have fallen from 28.5% to below 2.5% since 2010. AI’s inflection point for Object Detection task of the Large Scale Visual Recognition Challenge (LSVRC) Competition occurred in 2014. On this specific test, AI is now more accurate than human These findings are from the competition data from the leaderboards for each LSVRC competition hosted on the ImageNet website.

  • Global revenues from AI for enterprise applications is projected to grow from $1.62B in 2018 to $31.2B in 2025 attaining a 52.59% CAGR in the forecast period. Image recognition and tagging, patient data processing, localization and mapping, predictive maintenance, use of algorithms and machine learning to predict and thwart security threats, intelligent recruitment, and HR systems are a few of the many enterprise application use cases predicted to fuel the projected rapid growth of AI in the enterprise. Source: Statista.

  • 84% of enterprises believe investing in AI will lead to greater competitive advantages. 75% believe that AI will open up new businesses while also providing competitors new ways to gain access to their markets. 63% believe the pressure to reduce costs will require the use of AI. Source: Statista.

  • 87% of current AI adopters said they were using or considering using AI for sales forecasting and for improving e-mail marketing. 61% of all respondents said that they currently used or were planning to use AI for sales forecasting. The following graphic compares adoption rates of current AI adopters versus all respondents. Source: Statista.  

By 2020 83% Of Enterprise Workloads Will Be In The Cloud

  • Digitally transforming enterprises (63%) is the leading factor driving greater public cloud engagement or adoption today.
  • 66% of IT professionals say security is their most significant concern in adopting an enterprise cloud computing strategy.
  • 50% of IT professionals believe artificial intelligence and machine learning are playing a role in cloud computing adoption today, growing to 67% by 2020.
  • Artificial Intelligence (AI) and Machine Learning will be the leading catalyst driving greater cloud computing adoption by 2020.

These insights and findings are from LogicMonitor’s Cloud Vision 2020: The Future of the Cloud Study (PDF, free, opt-in, 9 pp.). The survey is based on interviews with approximately 300 influencers LogicMonitor interviewed in November 2017. Respondents include Amazon Web Services AWS re:Invent 2017 attendees, industry analysts, media, consultants and vendor strategists. The study’s primary goal is to explore the landscape for cloud services in 2020. While the study’s findings are not statistically significant, they do provide a fascinating glimpse into current and future enterprise cloud computing strategies.

Key takeaways include the following:

  • 83% Of Enterprise Workloads Will Be In The Cloud By 2020. LogicMonitor’s survey is predicting that 41% of enterprise workloads will be run on public cloud platforms (Amazon AWSGoogle Cloud PlatformIBM CloudMicrosoft Azure and others) by 2020. An additional 20% are predicted to be private-cloud-based followed by another 22% running on hybrid cloud platforms by 2020. On-premise workloads are predicted to shrink from 37% today to 27% of all workloads by 2020.

  • Digitally transforming enterprises (63%) is the leading factor driving greater public cloud engagement or adoption followed by the pursuit of IT agility (62%). LogicMonitor’s survey found that the many challenges enterprises face in digitally transforming their business models are the leading contributing factor to cloud computing adoption. Attaining IT agility (62%), excelling at DevOps (58%), mobility (55%), Artificial Intelligence (AI) and Machine Learning (50%) and the Internet of Things (IoT) adoption (45%) are the top six factors driving cloud adoption today. Artifical Intelligence (AI) and Machine Learning are predicted to be the leading factors driving greater cloud computing adoption by 2020.

  • 66% of IT professionals say security is their greatest concern in adopting an enterprise cloud computing strategy. Cloud platform and service providers will go on a buying spree in 2018 to strengthen and harden their platforms in this area. Verizon (NYSE:VZ) acquiring Niddel this week is just the beginning. Niddel’s Magnet software is a machine learning-based threat-hunting system that will be integrated into Verizon’s enterprise-class cloud services and systems. Additional concerns include attaining governance and compliance goals on cloud-based platforms (60%), overcoming the challenges of having staff that lacks cloud experience (58%), Privacy (57%) and vendor lock-in (47%).

  • Just 27% of respondents predict that by 2022, 95% of all workloads will run in the cloud. One in five respondents believes it will take ten years to reach that level of workload migration. 13% of respondents don’t see this level of workload shift ever occurring. Based on conversations with CIOs and CEOs in manufacturing and financial services industries there will be a mix of workloads between on-premise and cloud for the foreseeable future. C-level executives evaluate shifting workloads based on each systems’ contribution to new business models, cost, and revenue goals in addition to accelerating time-to-market.

  • Microsoft Azure and Google Cloud Platform are predicted to gain market share versus Amazon AWS in the next three years, with AWS staying the clear market leader. The study found 42% of respondents are predicting Microsoft Azure will gain more market share by 2020. Google Cloud Platform is predicted to also gain ground according to 35% of the respondent base. AWS is predicted to extend its market dominance with 52% market share by 2020.

Data Science And Machine Learning Jobs Most In-Demand on LinkedIn

  • Machine Learning Engineers, Data Scientists, and Big Data Engineers rank among the top emerging jobs on LinkedIn.
  • Data scientist roles have grown over 650% since 2012, but currently, 35,000 people in the US have data science skills, while hundreds of companies are hiring for those roles.
  • There are currently 1,829 open Machine Learning Engineering positions on LinkedIn.
  • Job growth in the next decade is expected to outstrip growth during the previous decade, creating 11.5M jobs by 2026, according to the U.S. Bureau of Labor Statistics.

These and many other insights are from the recently released LinkedIn 2017 U.S. Emerging Jobs Report. LinkedIn has provided an overview of the methodology in their post, The Fastest-Growing Jobs in the U.S. Based on LinkedIn Data. “Emerging jobs” refers to the job titles that saw the largest growth in frequency over that five year period. LinkedIn reports that based on their analysis, the job market in the U.S. is brimming right now with fresh and exciting opportunities for professionals in a range of emerging roles.

Key takeaways from the study include the following:

  • There are 9.8 times more Machine Learning Engineers working today than five years ago based on LinkedIn’s research, with 1,829 open positions listed on the site today. There are 6.5 times more Data Scientists than five years ago, and 5.5 times more Big Data Developers. The following graphic illustrates the rapid growth of key data scient, machine leanring, big data and full stack developers in addition to sales development and customer success managers.

  • Software engineering is a common starting point for professionals who are in the top five fasting growing jobs today. The career path to Machine Learning Engineer and Big Data Developer begins with a solid software engineering background. The top five highest growth job typical career paths are shown below:

  • The skills most strongly represented across the 20 fastest growing jobs include management, sales, communication, and marketing. Additional skills represented across the highest growing jobs include marketing expertise (analytics and marketing automation), start-ups, Python, software development, analytics, cloud computing and knowledge of retail systems.
  • LinkedIn interviewed 1,200 hiring managers to determine which soft skills are most in-demand and adaptability came out on top. Additional soft skills include culture fit, collaboration, leadership, growth potential, and prioritization.


LinkedIn Blog: The Fastest-Growing Jobs in the U.S. Based on LinkedIn Data

LinkedIn’s 2017 U.S. Emerging Jobs Report

53% Of Companies Are Adopting Big Data Analytics

  • Big data adoption reached 53% in 2017 for all companies interviewed, up from 17% in 2015, with telecom and financial services leading early adopters.
  • Reporting, dashboards, advanced visualization end-user “self-service” and data warehousing are the top five technologies and initiatives strategic to business intelligence.
  • Data warehouse optimization remains the top use case for big data, followed by customer/social analysis and predictive maintenance.
  • Among big data distributions, Cloudera is the most popular, followed by Hortonworks, MAP/R, and Amazon EMR.

These and many other insights are from Dresner Advisory Services’ insightful 2017 Big Data Analytics Market Study (94 pp., PDF, client accessed reqd), which is part of their Wisdom of Crowds® series of research. This 3rd annual report examines end-user trends and intentions surrounding big data analytics, defined as systems that enable end-user access to and analysis of data contained and managed within the Hadoop ecosystem. The 2017 Big Data Analytics Market Study represents a cross-section of data that spans geographies, functions, organization size, and vertical industries. Please see page 10 of the study for additional details regarding the methodology.

“Across the three years of our comprehensive study of big data analytics, we see a significant increase in uptake in usage and a large drop of those with no plans to adopt,” said Howard Dresner, founder and chief research officer at Dresner Advisory Services. “In 2017, IT has emerged as the most typical adopter of big data, although all departments – including finance – are considering future use. This is an indication that big data is becoming less an experimental endeavor and more of a practical pursuit within organizations.”

Key takeaways include the following:

  • Reporting, dashboards, advanced visualization end-user “self-service” and data warehousing are the top five technologies and initiatives strategic to business intelligence.  Big Data ranks 20th across 33 key technologies Dresner Advisory Services currently tracks.  Big Data Analytics is of greater strategic importance than the Internet of Things (IoT), natural language analytics, cognitive Business Intelligence (BI) and Location intelligence.

  • 53% of companies are using big data analytics today, up from 17% in 2015 with Telecom and Financial Services industries fueling the fastest adoption. Telecom and financial services are the most active early adopters, with Technology and Healthcare being the third and fourth industries seeing big data analytics Education has the lowest adoption as 2017 comes to a close, with the majority of institutions in that vertical saying they are evaluating big data analytics for the future. North America (55%) narrowly leads EMEA (53%) in their current levels of big data analytics adoption. Asia-Pacific respondents report 44% current adoption and are most likely to say they “may use big data in the future.”

  • Data warehouse optimization is considered the most important big data analytics use case in 2017, followed by customer/social analysis and predictive maintenance. Data warehouse optimization is considered critical or very important by 70% of all respondents. It’s interesting to note and ironic that the Internet of Things (IoT) is among the lowest priority use cases for big data analytics today.

  • Big data analytics use cases vary significantly by industry with data warehouse optimization dominating Financial Services, Healthcare, and Customer/social analysis is the leading use case in Technology-based companies. Fraud detection use cases also dominate Financial Services and Telecommunications. Using big data for clickstream analytics is most popular in Financial Services.

  • Spark, MapReduce, and Yarn are the three most popular software frameworks today. Over 30% of respondents consider Spark critical to their big data analytics strategies. MapReduce and Yarn are “critical” to more than 20 percent of respondents.

  • The big data access methods most preferred by respondents include Spark SQL, Hive, HDFS and Amazon S3. 73% of the respondents consider Spark SQL critical to their analytics strategies. Over 30% of respondents consider Hive and HDFS critical as well. Amazon S3 is critical to one of five respondents for managing big data access. The following graphic shows the distribution of big data access methods.

  • Machine learning continues to gain more industry support and investment plans with Spark Machine Learning Library (MLib) adoption projected to grow by 60% in the next 12 months. In the next 24 months, MLib will dominate machine learning according to the survey results. MLib is accessible from the Sparklyr R Package and many others, which continues to fuel its growth. The following graphic compares projected two-year adoption rates by machine learning libraries and frameworks.

%d bloggers like this: