Skip to content

Posts from the ‘BigData’ Category

6M Developers Are Creating Big Data And Advanced Analytics Apps Today

  • analytics-development2M developers are working on IoT applications, increasing 34% since the last year.
  • Over 50% of the developers working on IoT applications are writing software that utilizes sensors in some capacity.
  • 4M enterprise developers play decision-making roles when it comes to selecting organizational IT development resources. Another 5.2 million hold decision-making authority for selecting IT deployment resources.
  • 4M developers (26% of all developers globally) are using the cloud as a development environment today
  • The APAC region leads the world with approximately 7.4M developers today, followed by EMEA with 7.2M, North America with 4.4M and Latin American with 1.9M.

These and many other fascinating insights are from the Evans Data Corporation Global Developer Population and Demographic Study 2016 (PDF, client access) published earlier this week. The methodology Evans Data has created to produce this report is the most comprehensive developed for aggregating, analyzing and predicting developer populations globally. The study combines Evans Data’s proprietary global developer population modeling with the current results of their semi-annual global developer survey.

Key takeaways from the study include the following:

  • 6M developers (29% of all developers globally) are involved in a Big Data and Advanced Analytics project today. An additional 25% of developers, or 5.3M, are going to begin Big Data and Advanced Analytics projects within the next six 13% or 2.6M of all developers globally are going to start Big Data and Advanced Analytics projects within the next 7 to 12 months.  The following graphic provides an overview of the involvement of 21M developers in Big Data and Advanced Analytics projects today. Please click on the image to expand for easier viewing.

involvement in big data analytics

  • 4M developers (26% of all developers globally) are using the cloud as a development environment today. Developers creating new apps in the cloud had increased 375% since Evans began measuring developer participation in mobile development in 2009 when just slightly more than 1.2M developers were using the cloud as their development platform. 4.5M developers (21% of all global developers) plan on beginning app development on cloud platforms in the next six months, and 3.9M (18% of all global developers) plan on starting development on the cloud in 7 – 12 months. Please click on the image to expand for easier viewing.

plans for cloud development

  • 8M developers in APAC (24% of all developers in the region) are currently developing on cloud platforms. 29% of APAC developers are planning to start cloud-based development in six months, and 20% in 7 – 12 months. The following graphic compares the number of developers currently using the cloud as a development environment today and the number who plan to in the future. Please click on the image to expand for easier viewing.

plans for cloud development by region

  • 34% of all Commercial Independent Software Vendors (ISVs) globally today (1.8M developers) are using the cloud as a development environment. An additional 1.4M are planning to begin cloud development in the next six months.  28% of developers globally creating apps in the cloud are from custom system integrators (SI) and value-added resellers (VARs).  23% or approximately 1.2M are from enterprises.  The following graphic compares the percent of developers by developer segment who are currently creating new apps in cloud environments. Please click on the image to expand for easier viewing.

Plans for cloud development by developer segment

  • 30% of developers (6.2M developers globally) are currently developing software for connected devices or the Internet of Things today, with an additional 26% planning to begin projects in 6 months. Evans Data found that this increased 34% over the last year. Also, 2.1M developers plan to begin development in this area within the next 7 to 12 months. The following graphic compares the number of developers globally by stage of development for creating software for connected devices or the Internet of Things. Please click on the image to expand for easier viewing.

Plans for Internet of Things Development

  • 41% of global developers creating connected device and IoT software today are from 27% are from North America, 24% are from EMEA and 7% from Latin America.  There are 6,072,048 developers currently working on connected device and IoT software today globally.  The following graphic provides an overview of the distribution of developers creating connected device and IoT software by region today. Please click on the image to expand for easier viewing.

Development for Connected Devices By Region

  • 34% of developers actively creating software for connected devices or the Internet of Things work for custom System Integrators (SI) and VARs today. ISVs are the next largest segment of developers working on IoT projects (30%) followed by enterprises (21%). The following graphic provides an overview of the global base of developers creating software for connected devices and IoT. Evans Data found there are 6.1M developers currently creating apps and solutions in this area alone. Please click on the image to expand for easier viewing.

Development for connected devices by developer segment 2

Roundup Of Analytics, Big Data & BI Forecasts And Market Estimates, 2016

  • World map technologyBig Data & business analytics software worldwide revenues will grow from nearly $122B in 2015 to more than $187B in 2019, an increase of more than 50% over the five-year forecast period.
  • The market for prescriptive analytics software is estimated to grow from approximately $415M in 2014 to $1.1B in 2019, attaining a 22% CAGR.
  • By 2020, predictive and prescriptive analytics will attract 40% of enterprises’ net new investment in business intelligence and analytics.

Making enterprises more customer-centric, sharpening focus on key initiatives that lead to entering new markets and creating new business models, and improving operational performance are three dominant factors driving analytics, Big Data, and business intelligence (BI) investments today. Unleashing the insights hidden in unstructured data is providing enterprises with the potential to compete and improve in areas they had limited visibility into before. Examples of these areas include the complexity of B2B selling and service relationships,  healthcare services, and maintenance, repair, and overhaul (MRO) of complex machinery.

Presented below are a roundup of recent analytics and big data forecasts and market estimates:

  • The global big data market will grow from $18.3B in 2014 to $92.2B by 2026, representing a compound annual growth rate of 14.4 percent. Wikibon predicts significant growth in all four sub-segments of big data software through 2026. Data management (14% CAGR), core technologies such as Hadoop, Spark and streaming analytics (24% CAGR), databases (18% CAGR) and big data applications, analytics and tools (23% CAGR) are the four fastest growing sub-segments according to Wikibon. Source: Wikibon forecasts Big Data market to hit $92.2B by 2026.

Wikibon big data forecast 2016

  • In 2015, the Global Analytics and Business Intelligence applications market grew 4% to approach nearly $11.6B in license, maintenance and subscription revenues with SAP maintaining market leadership. SAP led the marketing with 10% market share and $1.2B in Analytics and Business Intelligence (BI) product revenues, riding on a 23% jump in license, maintenance, and subscription revenues. SAS Institute was No. 2 achieving 9% share; IBM was the third at 8%, and Oracle and Microsoft were fourth and fifth place with 7% and 5%, respectively. Source: Apps Run The World: Top 10 Analytics and BI Software Vendors and Market Forecast 2015-2020.

analytics market shares

IDC FutureScape

  • The Total Data market is expected to nearly double in size, growing from $69.6B in revenue in 2015 to $132.3B in 2020. The specific market segments included in 451 Research’s analysis are operational databases, analytic databases, reporting and analytics, data management, performance management, event/stream processing, distributed data grid/cache, Hadoop, and search-based data platforms and analytics. Source: Total Data market expected to reach $132bn by 2020; 451 Research, June 14, 2016.

Worldwide total revenue by segment

overall adoption of big data

  • Improving customer relationships (55%) and making the business more data-focused (53%) are the top two business goals or objectives driving investments in data-driven initiatives today. 78% of enterprises agree that collection and analysis of Big Data have the potential to change fundamentally the way they do business over the next 1 to 3 years. Source: IDG Enterprise 2016 Data & Analytics Research, July 5, 2016.

Data Helps Customer Focused Organizations

  • Venture capital (VC) investment in Big Data accelerated quickly at the beginning of the year with DataDog ($94M), BloomReach ($56M), Qubole ($30M), PlaceIQ ($25M) and others receiving funding. Big Data startups received $6.64B in venture capital investment in 2015, 11% of total tech VC.  M&A activity has remained moderate (FirstMark noted 35 acquisitions since their latest landscape was published last year). Source: Matt Turck’s blog post, Is Big Data Still a Thing? (The 2016 Big Data Landscape).

big data landscape

  • IDC forecasts global spending on cognitive systems will reach nearly $31.3 billion in 2019 with a five-year compound annual growth rate (CAGR) of 55%. More than 40% of all cognitive systems spending throughout the forecast will go to software, which includes both cognitive applications (i.e., text and rich media analytics, tagging, searching, machine learning, categorization, clustering, hypothesis generation, question answering, visualization, filtering, alerting, and navigation). Also included in the forecasts are cognitive software platforms, which enable the development of intelligent, advisory, and cognitively enabled solutions.  Source:  Worldwide Spending on Cognitive Systems Forecast to Soar to More Than $31 Billion in 2019, According to a New IDC Spending Guide.
  • Big Data Analytics & Hadoop Market accounted for $8.48B in 2015 and is expected to reach $99.31B by 2022 growing at a CAGR of 42.1% from 2015 to 2022. The rise of big data analytics and rapid growth in consumer data capture and taxonomy techniques are a few of the many factors fueling market growth. Source: Stratistics Market Research Consulting (PDF, opt-in, payment reqd).

Additional sources of market information: 

Analytics Trends 2016 The Next Evolution, Deloitte.

Big data analytics, Ericsson White Paper Uen 288 23-3211 Rev B | October 2015

Big Data and the Intelligence Economy in Canada Big Data: Big Opportunities to Create Business Value, EMC.

The Forrester Wave™: Big Data Hadoop Distributions, Q1 2016

The Forrester Wave™: Big Data Hadoop Cloud Solutions, Q2 2016

The Forrester Wave™: Big Data Text Analytics Platforms, Q2 2016

The Forrester Wave™: Big Data Streaming Analytics, Q1 2016

The Forrester Wave™: Customer Analytics Solutions, Q1 2016

From Big Data to Better Decisions: The ultimate guide to business intelligence today (Domo)

Gartner Hype Cycle for Business Intelligence and Analytics, 2015

IBM: Extracting business value from the 4 V’s of big data

IDC Worldwide Big Data Technology and Services 2012 – 2015 Forecast

Opportunities in Telecom Sector: Arising from Big Data. Deloitte, November 2015

Who will win as Finance doubles down on analytics?

Businesses Adopting Big Data, Cloud & Mobility Grow 53% Faster Than Peers

  • London sykline duskOrchestrating big data, cloud and mobility strategies leads to 53% greater growth than peers not adopting these technologies.
  • 73% of midmarket companies say the complexity of their stored data requires big data analytics apps and tools to better gain insights from.
  • 41% of midmarket companies are using big data to better target marketing efforts.
  •  54% of midmarket companies’ security budgets are invested in security plans versus reacting to threats.

These and many other insights are from Dell’s second annual Global Technology Adoption Index (GTAI 2015) released last week in collaboration with TNS Research. The Global Technology Adoption Index surveyed IT and business decision makers of mid-market organizations across 11 countries, interviewing 2,900 IT and business decision makers representing businesses with 100 to 4,999 employees.

The purpose of the index is to understand how business users perceive, plan for and utilize four key technologies: cloud, mobility, security and big data. Dell released the first wave of its results this week and will be publishing several additional chapters throughout 2016. You can download Chapter 1 of the study here (PDF, no opt-in, 18 pp.).

Key take-aways from the study include the following:

  • Orchestrating big data, cloud and mobility strategies leads to 53% greater growth than peers not adopting these technologies. Midmarket organizations adopting big data alone have the potential to grow 50% more than comparable organizations. Effective use of Bring Your Own Device (BYOD) mobility strategies has the potential to increase growth by 53% over laggards or late adopters..

orchestrating tech for greater growth

  • 73% of North American organizations believe the volume and complexity of their data requires big data analytics apps and tools.  This is up from 54% in 2014, indicating midmarket organizations are concentrating on how to get more value from the massive data stores many have accumulated.  This same group of organizations believe they are getting more value out of big data this year (69%) compared to last year (64%).  Top outcomes of using big data include better targeting of marketing efforts (41%), optimization of ad spending (37%), and optimization of social media marketing (37%).

top outcomes

  • 54% of an organization’s security budget is invested in security plans versus reacting to threats. Dell & TNS Research discovered that midmarket organizations both in North America and Western Europe are relying on security to enable new devices or drive competitive advantage.  In North America, taking a more strategic approach to security has increased from 25% in 2014 to 35% today.  In Western Europe, the percentage of companies taking a more strategic view of security has increased from 26% in 2014 to 30% this year.

security strategic

  • IT infrastructure costs to support big data initiatives (29%) and costs related to securing the data (28%) are the two greatest barriers to big data adoption. For cloud adoption, costs and security are the two biggest barriers in midmarket organizations as is shown in the graphic below.

security costs

  • Cloud use by midmarket companies in France increased 12% in the last twelve months, leading all nations in the survey.  Of the 11 countries surveyed, France had the greatest increase in cloud adoption within midmarket companies.  French businesses increased their adoption of cloud applications and platforms from 70% in 2014 to 82% in 2015.

Sources: Dell Study Reveals Companies Investing in Cloud, Mobility, Security and Big Data Are Growing More Than 50 Percent Faster Than Laggards. October 13, 2015

 

10 Ways Big Data Is Revolutionizing Supply Chain Management

supply chain managementBottom line: Big data is providing supplier networks with greater data accuracy, clarity, and insights, leading to more contextual intelligence shared across supply chains.

Forward-thinking manufacturers are orchestrating 80% or more of their supplier network activity outside their four walls, using big data and cloud-based technologies to get beyond the constraints of legacy Enterprise Resource Planning (ERP) and Supply Chain Management (SCM) systems. For manufacturers whose business models are based on rapid product lifecycles and speed, legacy ERP systems are a bottleneck.  Designed for delivering order, shipment and transactional data, these systems aren’t capable of scaling to meet the challenges supply chains face today.

Choosing to compete on accuracy, speed and quality forces supplier networks to get to a level of contextual intelligence not possible with legacy ERP and SCM systems. While many companies today haven’t yet adopted big data into their supply chain operations, these ten factors taken together will be the catalyst that get many moving on their journey.

The ten ways big data is revolutionizing supply chain management include:

Figure 1 SCM Data Volume Velocity Variety

  • Enabling more complex supplier networks that focus on knowledge sharing and collaboration as the value-add over just completing transactions.  Big data is revolutionizing how supplier networks form, grow, proliferate into new markets and mature over time. Transactions aren’t the only goal, creating knowledge-sharing networks is, based on the insights gained from big data analytics. The following graphic from Business Ecosystems Come Of Age (Deloitte University Press) (free, no opt-in) illustrates the progression of supply chains from networks or webs, where knowledge sharing becomes a priority.

figure 1 big data scm

  • Big data and advanced analytics are being integrated into optimization tools, demand forecasting, integrated business planning and supplier collaboration & risk analytics at a quickening pace. These are the top four supply chain capabilities that Delotte found are currently in use form their recent study, Supply Chain Talent of the Future Findings from the 3rd Annual Supply Chain Survey (free, no opt-in). Control tower analytics and visualization are also on the roadmaps of supply chain teams currently running big data pilots.

Figure 2 use of supply chain capabilities

  • 64% of supply chain executives consider big data analytics a disruptive and important technology, setting the foundation for long-term change management in their organizations.  SCM World’s latest Chief Supply Chain Officer Report provides a prioritization of the most disruptive technologies for supply chains as defined by the organizations’ members.  The following graphic from the report provides insights into how senior supply chain executives are prioritizing big data analytics over other technologies.

disruptive tech

  • Using geoanalytics based on big data to merge and optimize delivery networks.  The Boston Consulting Group provides insights into how big data is being put to use in supply chain management in the article Making Big Data Work: Supply Chain Management (free, opt-in). One of the examples provided is how the merger of two delivery networks was orchestrated and optimized using geoanalytics. The following graphic is from the article. Combining geoanalytics and big data sets could drastically reduce cable TV tech wait times and driving up service accuracy, fixing one of the most well-known service challenges of companies in that business.

Figure 4 geoanalytics

figure 6 big data

 

figure 7 big data

  • Greater contextual intelligence of how supply chain tactics, strategies and operations are influencing financial objectives.  Supply chain visibility often refers to being able to see multiple supplier layers deep into a supply network.  It’s been my experience that being able to track financial outcomes of supply chain decisions back to financial objectives is attainable, and with big data app integration to financial systems, very effective in industries with rapid inventory turns. Source: Turn Big Data Into Big Visibility.

figure 8 traceability

  • Traceability and recalls are by nature data-intensive, making big data’s contribution potentially significant. Big data has the potential to provide improved traceability performance and reduce the thousands of hours lost just trying to access, integrate and manage product databases that provide data on where products are in the field needing to be recalled or retrofitted.
  • Increasing supplier quality from supplier audit to inbound inspection and final assembly with big data. IBM has developed a quality early-warning system that detects and then defines a prioritization framework that isolates quality problem faster than more traditional methods, including Statistical Process Control (SPC). The early-warning system is deployed upstream of suppliers and extends out to products in the field.

Where Big Data Jobs Will Be In 2015

Big Data Drives Rapid ChangesDemand for Computer Systems Analysts with big data expertise increased 89.9% in the last twelve months and 85.40% for Computer and Information Research Scientists.

Demand for Python programming expertise increased 96.9% in big-data related positions in the last twelve months.

These and other key insights are from a recent analysis completed of big data hiring trends using WANTED Analytics, the leading provider of data analytics on the workplace.  For purposes of this analysis, the term “big data” is comprised of the four skill sets of data analysis, data acquisition, data mining and data structures. The WANTED Analytics taxonomy references these skill sets when queries are made on the term “big data”.

The company currently maintains a database of more than one billion unique job listings and is collecting hiring trend data from more than 150 countries. WANTED Analytics has never been a client, they provided complimentary access based on my requesting a trial account. Many Forbes readers are interested in staying current on big data hiring trends, which led me to complete this analysis.

Key Take-aways include the following:

  • Demand for big data expertise across a range of occupations saw significant growth over the last twelve months. There was a 123.60% jump in demand for Information Technology Project Managers with big data expertise, and an 89.8% increase for Computer Systems Analysts. The following table provides an overview of the distribution of open positions by occupation and the percentage growth in job demand over time.

job growth matrix

  • The five leading industries with the most job openings requiring big data expertise include Professional, Scientific and Technical Services (27.14%), Information Technologies (18.89%), Manufacturing (12.35%), Retail Trade (9.62%) and Sustainability, Waste Management & Remediation Services (8.20%). The following graphic shows the distribution of open positions between September 1, 2014 to today, December 29, 2014:

top 20 industries hiring

  • The Hiring Scale is 76 for jobs that require big data skills with 12 candidates per job opening as of December 29, 2014.  The higher the Hiring Scale score, the more difficult it is for employers to find the right applicants for open positions. Nationally an average job posting for an IT professional with cloud computing expertise is open just 47 days.

big data hiring scale

  • The median salary for professionals with big data expertise is $103,000 a year. Sample jobs in this category include Big Data Solution Architect, Linux Systems and Big Data Engineer, Big Data Platform Engineer, Lead Software Engineer, Big Data (Java, Hadoop, SQL) and others.  The distribution of median salaries across all industries shown below:

big data market salary

  • San Jose – Sunnyvale – Santa Clara, CA, San Francisco – Oakland – Fremont, CA, and Washington – Arlington – Alexandria, DC are the top three U.S. employment markets for big data related jobs as of today.  Mapping the distribution of job volume, salary range, candidate supply, posting period and hiring scale by Metropolitan Statistical Area (MSA) or states and counties is supported by WANTED Analytics and shown in the following graphic. A summary of the top twenty employment markets is also shown following the map:

US Hiring Map

US Top Markets

  • Cisco (NASDAQ:CSCO), IBM (NYSE: IBM) and Oracle (NYSE:ORCL) have the most open big data-related positions today. Cisco, its supplier, partner and support ecosystem companies have 3,613 related big data positions available.  The following table shows the top ten big data employers today, the distribution of jobs, and the number of new jobs added over the last year.

top ten employers

  • Python programming (96.90%), Linux expertise (76.60%) and Structured Query Language (SQL) (76%) are the three most in-demand skills in positions that mention big data as a requirement.  The following table provides an overview of the top 10 most in-demand skills:

skills

Ten Ways Big Data Is Revolutionizing Manufacturing

quality1McKinsey & Company recently published How Big Data Can Improve Manufacturing which provides insightful analysis of how big data and advanced analytics can streamline biopharmaceutical, chemical and discrete manufacturing.

The article highlights how manufacturers in process-based industries are using advanced analytics to increase yields and reduce costs. Manufacturers have an abundance of operational and shop floor data that is being used for tracking today.  The McKinsey article shows through several examples how big data and advanced analytics applications and platforms can deliver operational insights as well.

The following graphic from the article illustrates how big data and advanced analytics are streamlining manufacturing value chains by finding the core determinants of process performance, and then taking action to continually improve them:

Advanced Analytics Big Data in Manufacturing

Big Data’s Impact on Manufacturing Is Growing

In addition to the examples provided in the McKinsey article, there are ten ways big data is revolutionizing manufacturing:

  • Increasing the accuracy, quality and yield of biopharmaceutical production.  It is common in biopharmaceutical production flows to monitor more than 200 variables to ensure the purity of the ingredients as well as the substances being made stay in compliance. One of the many factors that makes biopharmaceutical production so challenging is that yields can vary from 50 to 100% for no immediately discernible reason. Using advanced analytics, a manufacturer was able to track the nine parameters that most explained yield variation. Based on this insight they were able to increase the vaccine’s yield by 50%, worth between $5M to $10M in yearly savings for the single vaccine alone.
  • Accelerating the integration of IT, manufacturing and operational systems making the vision of Industrie 4.0 a reality. Industrie 4.0 is a German government initiative that promotes automation of the manufacturing industry with the goal of developing Smart Factories. Big data is already being used for optimizing production schedules based on supplier, customer, machine availability and cost constraints. Manufacturing value chains in highly regulated industries that rely on German suppliers and manufacturers are making rapid strides with Industrie 4.0 today.  As this initiative serves as a catalyst to galvanize diverse multifunctional departments together, big data and advanced analytics will become critical to its success.
  • Better forecasts of product demand and production (46%), understanding plant performance across multiple metrics (45%) and providing service and support to customers faster (39%) are the top three areas big data can improve manufacturing performance.   These findings are from a recent survey LNS Research and MESA International completed to see where big data is delivering the greatest manufacturing performance improvements today. You can find the original blog post here.

LNS Graphic

  • Integrating advanced analytics across the Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) framework to fuel continuous improvement.  Getting greater insights into how each phase of a DMAIC-driven improvement program is working, and how the efforts made impact all other areas of manufacturing performance is nascent today. This area shows great potential to make production workflows more customer-driven than ever before.
  • Greater visibility into supplier quality levels, and greater accuracy in predicting supplier performance over time.  Using big data and advanced analytics, manufacturers are able to view product quality and delivery accuracy in real-time, making trade-offs on which suppliers receive the most time-sensitive orders.  Managing to quality metrics becomes the priority over measuring delivery schedule performance alone.
  • Measuring compliance and traceability to the machine level becomes possible. Using sensors on all machinery in a production center provides operations managers with immediate visibility into how each is operating. Having advanced analytics can also show quality, performance and training variances by each machine and its operators.  This is invaluable in streamlining workflows in a production center, and is becoming increasingly commonplace.
  • Selling only the most profitable customized or build-to-order configurations of products that impact production the least.  For many complex manufacturers, customized or build-to-order products deliver higher-than-average gross margins yet also costs exponentially more if production processes aren’t well planned.  Using advanced analytics, manufacturers are discovering which of the myriad of build-to-order configurations they can sell with the most minimal impact to existing production schedules to the machine scheduling, staffing and shop floor level.
  • Breaking quality management and compliance systems out of their silos and making them a corporate priority.  It’s time for more manufacturers to take a more strategic view of quality and quit being satisfied with standalone, siloed quality management and compliance systems.  The McKinsey article and articles listed at the end of this post provide many examples of how big data and analytics are providing insights into which parameters matter most to quality management and compliance. The majority of these parameters are corporate-wide, not just limited to quality management or compliance departments alone.
  • Quantify how daily production impacts financial performance with visibility to the machine level. Big data and advanced analytics are delivering the missing link that can unify daily production activity to the financial performance of a manufacturer.  Being able to know to the machine level if the factory floor is running efficiently, production planners and senior management know how best to scale operations.  By unifying daily production to financial metrics, manufacturers have a greater chance of profitably scaling their operations.
  • Service becomes strategic and a contributor to customers’ goals by monitoring products and proactively providing preventative maintenance recommendations.  Manufacturers are starting to look at the more complex products they produce as needing an operating system to manage the sensors onboard. These sensors report back activity and can send alerts for preventative maintenance. Big data and analytics will make the level of recommendations contextual for the first time so customers can get greater value.  General Electric is doing this today with its jet engines and drilling platforms for example.

Additional sources of information on Big Data in Manufacturing:

 

BCG’s Value Creators Report Shows How Software Is Driving New Business Models

boston-300x211Boston Consulting Group (BCG) recently released their fifth annual technology, media and telecommunications (TMT) value report. The 2013 TMT Value Creators Report: The Great Software Transformation, How to Win as Technology Changes the World (free, opt-in required, 41 pgs).

The five trends that serve as the foundation of this report include the increasing pervasiveness of software, affordable small devices, ubiquitous broadband connectivity, big-data analytics and cloud computing.  BCG’s analysis illustrates how the majority of TMT companies that deliver the most value to shareholders are concentrating on the explosive growth of new markets, the rise of software-enabled digital metasystems, and for many, both.

The study is based on an analysis of 191 companies, 76 in the technology industry, 62 from media and 53 from telecom.  To review the methodology of this study please see page 28 of the report.

Here are the key takeaways from this years’ BCG TMT Value Creators Report:

  • BCG is predicting 1B smartphones will be sold in 2013, the first year their sales will have exceeded those of features phones.  By 2018, there will be more than 5B “post-PC” products (tablets & smartphones) in circulation. There are nearly as many mobile connections in the world as people (6.8B) according to the United Nation’s International Telecommunication Union (ITU).

bcg figure 1

  • 27 terabytes of data is generated every second through the creation of video, images social networks, transactional and enterprise-based systems and networks.  90% of the data that is stored today didn’t exist two years ago, and the annual data growth rate in future years is projected to be 40% to 60% over current levels according to BCG’s analysis.

bcg figure 2

  • The ascent of communications speeds is surpassing Moore’s Law as a structural driver of growth.  BCG completed the following analysis graphing the progression of microprocessor transition count (Moore’s Law) relative to Internet speed (bps) citing Butter’s Law of Photonics which states that the amount of data coming out of an optical fiber is doubling every nine months. BCG states that these dynamics are democratizing information technology and will lead to the cloud computing industry (software and services) reaching nearly $250B in 2017.
    bcg figure 3
  • BCG predicts that India will see a fivefold increase in digitally-influenced spending, ascending from $30B in 2012 to $150B in 2016, among the fastest of all nations globally according to their study. India will also see the value of online purchases increase from $8B in 2012 t5o $50B in 2016.

bcg figure 4

  • 3D printing is forecast to become a $3.1B market by 2016, and will have an economic impact of $550B in 2025, fueling rapid price reductions in 3D printers through 2017.  BCG sees 3D printing, connected travel, genomics and smart grid technologies are central to their digital metasystem.   The following graphic illustrates the key trends in each of these areas along with research findings from BCG and other sources.

bcg figure 5

  • Only 7% of customers are comfortable with their information being used outside of the purpose for which it was originally gathered.

bcg figure 6

  • BCG reports that mobile infrastructure investments in Europe have fallen 67% from 2004 to 2014.  Less than 1% of mobile connections in Europe were 4B as of the end of 2012, compared to 11% in the U.S. and 28% in South Korea.   European operators have also been challenged to monetize mobile data as well, as the following figures illustrate.

bcg figure 7

bcg figure 8

  • Big Data is attracting $19B in funding across five key areas according to BCG’s analysis.  These include consumer data and marketing, enterprise data, analytical tools, vertical markets and data platforms.  A graphical analysis of these investments is shown below.

bcg figure 9

Why CIOs Are Quickly Prioritizing Analytics, Cloud and Mobile

Customers are quickly reinventing how they choose to learn about new products, keep current on existing ones, and stay loyal to those brands they most value.  The best-run companies are all over this, orchestrating their IT strategies to be as responsive as possible.

The luxury of long technology evaluation cycles, introspective analysis of systems, and long deployment timeframes are giving way to rapid deployments and systems designed for accuracy and speed.

CIOs need to be just as strong at strategic planning and execution as they are at technology.  Many are quickly prioritizing analytics, cloud and mobile strategies to stay in step with their rapidly changing customer bases.  This is especially true for those companies with less than $1B in sales, as analytics, cloud computing and mobility can be combined to compete very effectively against their much bigger rivals.

What’s Driving CIOs – A Look At Technology Priorities

Gartner’s annual survey of CIOs includes 2,300 respondents located in 44 countries, competing in all major industries.  As of the last annual survey, the three-highest rated priorities for investment from 2012 to 2015 included Analytics and Business Intelligence (BI), Mobile Technologies and Cloud Computing.

Source: From the Gartner Report Market Insight: Technology Opens Up Opportunities in SMB Vertical Markets September 6, 2012 by Christine Arcaris, Jeffrey Roster

 

How Industries Prioritize Analytics, Cloud and Mobile  

When  these priorities are analyzed across eight key industries, patterns emerge showing how the  communications, media and services (CMS) and manufacturing industries have the highest immediate growth potential for mobility (Next 2 years).  In Big Data/BI, Financial Services is projected to be the fastest-developing industry and in Cloud computing, CMS and Government.

In analyzing this and related data, a profile of early adopter enterprises emerges.  These are companies who are based on knowledge-intensive business models, have created and excel at running virtual organization structures, rely on mobility to connect with and build relationships with customers, and have deep analytics expertise.  In short, their business models take the best of what mobility, Big Data/BI and cloud computing have to offer and align it to their strategic plans and programs.  The following figure, Vertical Industry Growth by Technology Over the Next Five Years, shows the prioritization and relative growth by industry.

Source: From the Gartner Report Market Insight: Technology Opens Up Opportunities in SMB Vertical Markets September 6, 2012 by Christine Arcaris, Jeffrey Roster

How Mobility Could Emerge As the Trojan Horse of Enterprise Software

Bring Your Own Device (BYOD), the rapid ascent of enterprise application stores, and the high expectations customers have of continual mobile app usability and performance improvements are just three of many factors driving mobility growth.

Just as significant is the success many mid-tier companies are having in competing with their larger, more globally known rivals using mobile-based Customer Relationship Management (CRM), warranty management, service and spare parts procurement strategies.  What smaller competitors lack in breadth they are more than making up for in speed and responsiveness.   Gartner’s IT Market Clock for Enterprise Mobility, 2012 captures how mobility is changing the nature of competition.

Source: IT Market Clock for Enterprise Mobility, 2012 Published: 10 September 2012 Analyst(s): Monica Basso

 

Bottom Line – By excelling at the orchestration of analytics, cloud and mobile, enterprises can differentiate where it matters most – by delivering an excellent customer experience.  Mobility can emerge as an enterprise Trojan Horse because it unleashes accuracy, precision and speed into customer-facing processes that larger, complacent competitors may have overlooked.

Gartner Releases Their Hype Cycle for Cloud Computing, 2012

Enterprises are beginning to change their buying behaviors based on the deployment speed, economics and customization that cloud-based technologies provide.  Gartner cautions however that enterprises are far from abandoning their on-premise models and applications entirely for the cloud.

Based on an analysis of the Gartner Hype Cycle for Cloud Computing, 2012, the best results are being attained by enterprises that focus on a very specific strategy and look to cloud-based technologies to accelerate their performance.  Leading with a strategic framework of goals and objectives increases the probability of cloud-based platform success. Those enterprises that look to cloud platforms only for cost reduction miss out on their full potential.

The Hype Cycle for Cloud Computing, 2012 is shown below:

Cloudwashing and Inflated Enterprise Expectations

While the hype surrounding cloud computing may have peaked, cloudwashing continues to cause confusion and inflated expectations with enterprise buyers.  This just slows down sales cycles, when more straightforward selling could lead to more pilots, sales and a potentially larger market. Cloud vendors who have the expertise gained from delivering cloud platforms on time, under budget, with customer references showing results are starting to overtake those that using cloudwashing as part of their selling strategies.

Additional take-aways from the Gartner Hype Cycle for Cloud Computing include the following:

  • Cloud Email is expected to have a 10% adoption rate in enterprises by 2014, down from the 20% Gartner had forecasted in previous Hype Cycles.  This represents modest growth as the adoption rate of this category had been between 5 and 6% in 2011.
  • Big Data will deliver transformational benefits to enterprises within 2 to 5 years, and by 2015 will enable enterprises adopting this technology to outperform competitors by 20% in every available financial metric.  Gartner defines Big Data as including large volumes processed in streams, in addition to batch.  Integral to Big Data is an extensible services framework that can deploy processing to the data or bring data to the process workflow itself. Gartner also includes more than one asset type of data in their definition, including structured and unstructured content.  The Priority Matrix for Cloud Computing, 2012 is shown below:

  • Master Data Management (MDM) Solutions in the Cloud and Hybrid IT are included in this hype cycle for the first time in 2012.  Gartner reports that MDM Solutions in the Cloud is getting additional interest from Enterprise buyers as part of a continual upward trend of interest in MDM overall.  Dominant vendors in this emerging area include Cognizant, Data Scout, IBM, Informatica, Oracle and Orchestra Networks, are among those with MDM-in-the-cloud solutions.
  • PaaS continues to be one of the most misunderstood aspects of cloud platforms.  The widening gap between enterprise expectations and experiences is most prevalent in this market.  Gartner claims this is attributable to the relatively narrow middleware functions delivered and the consolidation fo vendors and service providers in this market.
  • By 2014 the Personal Cloud will have replaced the personal computer as the center of user’s digital lives.
  • Private Cloud Computing is among the highest interest areas across all cloud computing according to Gartner, with 75% of respondents in Gartner polls saying they plan to pursue a strategy in this area by 2014.  Pilot and production deployments are in process across many different enterprises today, with one of the major goals being the evaluation of virtualization-driven value and benefits.
  • SaaS is rapidly gaining adoption in enterprises, leading Gartner to forecast more than 50% of enterprises will have some form of SaaS-based application strategy by 2015.  Factors driving this adoption are the high priority enterprises are putting on customer relationships, gaining greater insights through analytics, overcoming IT- and capital budget-based limitations, and aligning IT more efficiently to strategic goals.
  • More than 50% of all virtualization workloads are based on the x86 architecture. This is expected to increase to 75% by 2015.  Gartner reports this is a disruptive innovation which is changing the relationship between IT and enterprise where service levels and usage can be tracked.

Bottom line: Gartner’s latest Hype Cycle for Cloud Computing  shows that when cloud-based platforms are aligned with well-defined strategic initiatives and line-of-business objectives, they deliver valuable contributions to an enterprise.  It also shows how Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) are the catalysts of long-term market growth.  The following slide from the presentation  High-Tech Tuesday Webinar: Gartner Worldwide IT Spending Forecast, 2Q12 Update: Cloud Is the Silver Lining (free for download) also makes this point.

Gartner Search Analytics Shows Spike in Hadoop Inquiries in 2012 – Good News For CRM

Hadoop was one of the most-searched terms on Gartner’s website in 2011 through 2012, spiking to 601.8% over the last twelve months alone.  Additional insights from the Search Analytics on Hadoop include the following:

  • 27% of all inquiries are from banking, finance and insurance industries, followed by manufacturing (14%), government (13%), services (10%) and healthcare (8%).
  • North America (75.9%) and EMEA (13.5%) are the two most dominant geographies in terms of query volume.
  • Here is the trend line from Gartner Search Analytics:

What’s driving Hadoop’s meteoric rise in searches is a combination of industry hype about big data, CIOs getting serious about using Hadoop distributions that minimize time and risk yet deliver value, and the dominant role Amazon is playing in bringing Hadoop into the cloud.  Today Amazon offers Elastic MapReduce as a Web Service that relies on a hosted Hadoop framework running the Elastic Compute Cloud (EC2) in conjunction with Amazon Simple Storage Service (S2).

Microsoft also scored a major hiring win this week announcing that Raghu Ramakrishnan, former chief scientist for three divisions of Yahoo is now with Microsoft. Raghu is now a technical fellow working in the Server and Tools Business (STB).  He’ll focus on big data and integration to STB platforms.  Big Data on Azure will accelerate now with him on-board.

Hadoop’s Potentially Galvanizing Effect on CRM and Social CRM Analytics

The quickening pace of Hadoop adoption in the enterprise is good news for CRM and especially social CRM. Analytics and Business Intelligence (BI) are the “glue” that unify CRM and keep it in context. One of Hadoop’s greatest potential contributions is the analysis, categorization and use of unstructured content.  Marketing and sales won’t have to run three or four systems to gain insights into customer data, they can run a single analytics platform that fuels the entire selling cycle and lifetime customer value chain of their businesses.  Hadoop has the potential to make unstructured content more meaningful while also reporting the impact of customer insights on financial performance, profitability and lifetime customer value.

Translating terabytes of customer, sales, services and partner data into meaningful analytics and business intelligence (BI) is emerging as a priority for CIOs, who are sharing responsibility for driving top-line revenue growth.   Hadoop shows potential to be the “glue” or galvanizing technology base that unifies all CRM and Social CRM strategies.

To get a perspective on how fast Hadoop is being evaluated and adopted it’s useful to look at the Hype Cycle for Data Management, the latest edition published July, 2011.   This is another indicator of how quickly Hadoop and big data are gaining in terms of CIO mindshare.  Big Data and extreme information management are on the technology Trigger area of the hype cycle.  The Hype Cycle for Data Management is shown below:

Bottom line:  CRM and Social CRM will benefit more than any other area of an enterprise as Hadoop’s adoption continues to accelerate.  CIOs are increasingly called upon to be strategists, and with the ability to translate terabytes of data into strategies that deliver dollars, look for Hadoop’s contributions to drive top-line revenue growth.

%d bloggers like this: