Skip to content

Posts from the ‘Factory of the Future’ Category

Industry 4.0’s Potential Needs To Be Proven On The Shop Floor

  • 99% of mid-market manufacturing executives are familiar with Industry 4.0, yet only 5% are currently implementing or have implemented an Industry 4.0 strategy.
  • Investing in upgrading existing machinery, replacing fully depreciated machines with next-generation smart, connected production equipment, and adopting real-time monitoring including Manufacturing Execution Systems (MES) are manufacturers’ top three priorities based on interviews with them.
  • Mid-market manufacturers getting the most value out of Industry 4.0 excel at orchestrating a variety of technologies to find new ways to excel at product quality, improve shop floor productivity, meet delivery dates, and control costs.
  • Real-time monitoring is gaining momentum to improve order cycle times, troubleshoot quality problems, improve schedule accuracy, and support track-and-trace.

These and many other fascinating insights are from Industry 4.0: Defining How Mid-Market Manufacturers Derive and Deliver ValueBDO is a leading provider of assurance, tax, and financial advisory services and is providing the report available for download here (PDF, 36 pp., no opt-in). The survey was conducted by Market Measurement, Inc., an independent market research consulting firm. The survey included 230 executives at U.S. manufacturing companies with annual revenues between $200M and $3B and was conducted in November and December of 2018. Please see page 2 of the study for additional details regarding the methodology. One of the most valuable findings of the study is that mid-market manufacturers need more evidence of Industry 4.0, delivering improved supply chain performance, quality, and shop floor productivity.

Insights from the Shop Floor: Machine Upgrades, Smart Machines, Real-Time Monitoring & MES Lead Investment Plans

In the many conversations I’ve had with mid-tier manufacturers located in North America this year, I’ve learned the following:

  • Their top investment priorities are upgrading existing machinery, replacing fully depreciated machines with next-generation smart, connected production equipment, and adopting real-time monitoring including Manufacturing Execution Systems (MES).
  • Manufacturers growing 10% or more this year over 2018 excel at integrating technologies that improve scheduling to enable more short-notice production runs, reduce order cycle times, and improve supplier quality.

Key Takeaways from BDO’s Industry 4.0 Study

  • Manufacturers are most motivated to evaluate Industry 4.0 technologies based on the potential for growth and business model diversification they offer. Building a business case for any new system or technology that delivers revenue, even during a pilot, is getting the highest priority by manufacturers today. Based on my interviews with manufacturers, I found they were 1.7 times more likely to invest in machine upgrades and smart machines versus spending more on marketing. Manufacturers are very interested in any new technology that enables them to accept short-notice production runs from customers, excel at higher quality standards, improve time-to-market, all the while having better cost visibility and control. All those factors are inherent in the top three goals of business model diversification, improved operational efficiencies, and increased market penetration.

  • For Industry 4.0 technologies to gain more adoption, more use cases are needed to explain how traditional product sales, aftermarket sales, and product-as-a-service benefit from these new technologies. Manufacturers know the ROI of investing in a machinery upgrade, buying a smart, connected machine, or integrating real-time monitoring across their shop floors. What they’re struggling with is how Industry 4.0 makes traditional product sales improve. 84% of upper mid-market manufacturers are generating revenue using Information-as-a-Service today compared to 67% of middle market manufacturers overall.

  • Manufacturers who get the most value out of their Industry 4.0 investments begin with a customer-centric blueprint first, integrating diverse technologies to deliver excellent customer experiences. Manufacturers growing 10% a year or more are relying on roadmaps to guide their technology buying decisions. These roadmaps are focused on how to reduce scrap, improve order cycle times, streamline supplier integration while improving inbound quality levels, and provide real-time order updates to customers. BDOs’ survey results reflect what I’m hearing from manufacturers. They’re more focused than ever before on having an integrated engagement strategy combined with greater flexibility in responding to unique and often urgent production runs.

  • Industry 4.0’s potential to improve supply chains needs greater focus if mid-tier manufacturers are going to adopt the framework fully. Manufacturing executives most often equate Industry 4.0 with shop floor productivity improvements while the greatest gains are waiting in their supply chains. The BDO study found that manufacturers are divided on the metrics they rely on to evaluate their supply chains. Upper middle market manufacturers are aiming to speed up customer order cycle times and are less focused on getting their total delivered costs down. Lower mid-market manufacturers say reducing inventory turnover is their biggest priority. Overall, strengthening customer service increases in importance with the size of the organization.

  • By enabling integration between engineering, supply chain management, Manufacturing Execution Systems (MES) and CRM systems, more manufacturers are achieving product configuration strategies at scale. A key growth strategy for many manufacturers is to scale beyond the limitations of their longstanding Make-to-Stock production strategies. By integrating engineering, supply chains, MES, and CRM, manufacturers can offer more flexibility to their customers while expanding their product strategies to include Configure-to-Order, Make-to-Order, and for highly customized products, Engineer-to-Order. The more Industry 4.0 can be shown to enable design-to-manufacturing at scale, the more it will resonate with senior executives in mid-tier manufacturing.

  • Manufacturers are more likely than ever before to accept cloud-based platforms and systems that help them achieve their business strategies faster and more completely, with analytics being in the early stages of adoption. Manufacturing CEOs and their teams are most concerned about how quickly new applications and platforms can position their businesses for more growth. Whether a given application or platform is cloud-based often becomes secondary to the speed and time-to-market constraints every manufacturing business faces. The fastest-growing mid-tier manufacturers are putting greater effort and intensity into mastering analytics across every area of their business too. BDO found that Artificial Intelligence (AI) leads all other technologies in planned use.

10 Ways To Improve Cloud ERP With AI And Machine Learning

Capitalizing on new digital business models and the growth opportunities they provide are forcing companies to re-evaluate ERP’s role. Made inflexible by years of customization, legacy ERP systems aren’t delivering what digital business models need today to scale and grow.

Legacy ERP systems were purpose-built to excel at production consistency first at the expense of flexibility and responsiveness to customers’ changing requirements. By taking a business case-based approach to integrating Artificial Intelligence (AI) and machine learning into their platforms, Cloud ERP providers can fill the gap legacy ERP systems can’t.

Closing Legacy ERP Gaps With Greater Intelligence And Insight

Companies need to be able to respond quickly to unexpected, unfamiliar and unforeseen dilemmas with smart decisions fast for new digital business models to succeed. That’s not possible today with legacy ERP systems. Legacy IT technology stacks and the ERP systems they are built on aren’t designed to deliver the data needed most.

That’s all changing fast. A clear, compelling business model and successful execution of its related strategies are what all successful Cloud ERP implementations share. Cloud ERP platforms and apps provide organizations the flexibility they need to prioritize growth plans over IT constraints. And many have taken an Application Programming Interface (API) approach to integrate with legacy ERP systems to gain the incremental data these systems provide. In today’s era of Cloud ERP, rip-and-replace isn’t as commonplace as reorganizing entire IT architectures for greater speed, scale, and customer transparency using cloud-first platforms.

New business models thrive when an ERP system is constantly learning. That’s one of the greatest gaps between what Cloud ERP platforms’ potential and where their legacy counterparts are today. Cloud platforms provide greater integration options and more flexibility to customize applications and improve usability which is one of the biggest drawbacks of legacy ERP systems. Designed to deliver results by providing AI- and machine learning insights, Cloud ERP platforms, and apps can rejuvenate ERP systems and their contributions to business growth.

The following are the 10 ways to improve Cloud ERP with AI and machine learning, bridging the information gap with legacy ERP systems:

  1. Cloud ERP platforms need to create and strengthen a self-learning knowledge system that orchestrates AI and machine learning from the shop floor to the top floor and across supplier networks. Having a cloud-based infrastructure that integrates core ERP Web Services, apps, and real-time monitoring to deliver a steady stream of data to AI and machine learning algorithms accelerates how quickly the entire system learns. The Cloud ERP platform integration roadmap needs to include APIs and Web Services to connect with the many suppliers and buyer systems outside the walls of a manufacturer while integrating with legacy ERP systems to aggregate and analyze the decades of data they have generated.

  1. Virtual agents have the potential to redefine many areas of manufacturing operations, from pick-by-voice systems to advanced diagnostics. Apple’s Siri, Amazon’s Alexa, Google Voice, and Microsoft Cortana have the potential to be modified to streamline operations tasks and processes, bringing contextual guidance and direction to complex tasks. An example of one task virtual agents are being used for today is guiding production workers to select from the correct product bin as required by the Bill of Materials. Machinery manufacturers are piloting voice agents that can provide detailed work instructions that streamline configure-to-order and engineer-to-order production. Amazon has successfully partnered with automotive manufacturers and has the most design wins as of today. They could easily replicate this success with machinery manufacturers.

  1. Design in the Internet of Things (IoT) support at the data structure level to realize quick wins as data collection pilots go live and scale. Cloud ERP platforms have the potential to capitalize on the massive data stream IoT devices are generating today by designing in support at the data structure level first. Providing IoT-based data to AI and machine learning apps continually will bridge the intelligence gap many companies face today as they pursue new business models. Capgemini has provided an analysis of IoT use cases shown below, highlighting how production asset maintenance and asset tracking are quick wins waiting to happen. Cloud ERP platforms can accelerate them by designing in IoT support.

  1. AI and machine learning can provide insights into how Overall Equipment Effectiveness (OEE) can be improved that aren’t apparent today. Manufacturers will welcome the opportunity to have greater insights into how they can stabilize then normalize OEE performance across their shop floors. When a Cloud ERP platform serves as an always-learning knowledge system, real-time monitoring data from machinery and production assets provide much-needed insights into areas for improvement and what’s going well on the shop floor.

  1. Designing machine learning algorithms into track-and-traceability to predict which lots from which suppliers are most likely to be of the highest or lowest quality. Machine learning algorithms excel at finding patterns in diverse data sets by continually applying constraint-based algorithms. Suppliers vary widely in their quality and delivery schedule performance levels. Using machine learning, it’s possible to create a track-and-trace application that could indicate which lot from which supplier is the riskiest and those that are of exceptional quality as well.
  2. Cloud ERP providers need to pay attention to how they can help close the configuration gap that exists between PLM, CAD, ERP and CRM systems by using AI and machine learning. The most successful product configuration strategies rely on a single, lifecycle-based view of product configurations. They’re able to alleviate the conflicts between how engineering designs a product with CAD and PLM, how sales & marketing sell it with CRM, and how manufacturing builds it with an ERP system. AI and machine learning can enable configuration lifecycle management and avert lost time and sales, streamlining CPQ and product configuration strategies in the process.
  3. Improving demand forecasting accuracy and enabling better collaboration with suppliers based on insights from machine learning-based predictive models is attainable with higher quality data. By creating a self-learning knowledge system, Cloud ERP providers can vastly improve data latency rates that lead to higher forecast accuracy. Factoring in sales, marketing, and promotional programs further fine-tunes forecast accuracy.
  4. Reducing equipment breakdowns and increasing asset utilization by analyzing machine-level data to determine when a given part needs to be replaced. It’s possible to capture a steady stream of data on each machine’s health level using sensors equipped with an IP address. Cloud ERP providers have a great opportunity to capture machine-level data and use machine learning techniques to find patterns in production performance by using a production floor’s entire data set. This is especially important in process industries where machinery breakdowns lead to lost sales. Oil refineries are using machine learning models comprise more than 1,000 variables related to material input, output and process perimeters including weather conditions to estimate equipment failures.
  5. Implementing self-learning algorithms that use production incident reports to predict production problems on assembly lines needs to happen in Cloud ERP platforms. A local aircraft manufacturer is doing this today by using predictive modeling and machine learning to compare past incident reports. With legacy ERP systems these problems would have gone undetected and turned into production slowdowns or worse, the line having to stop.
  6. Improving product quality by having machine learning algorithms aggregate, analyze and continually learn from supplier inspection, quality control, Return Material Authorization (RMA) and product failure data. Cloud ERP platforms are in a unique position of being able to scale across the entire lifecycle of a product and capture quality data from the supplier to the customer. With legacy ERP systems manufacturers most often rely on an analysis of scrap materials by type or caused followed by RMAs. It’s time to get to the truth about why products fail, and machine learning can deliver the insights to get there.

10 Ways Machine Learning Is Revolutionizing Manufacturing In 2018

  • Improving semiconductor manufacturing yields up to 30%, reducing scrap rates, and optimizing fab operations is achievable with machine learning.
  • Reducing supply chain forecasting errors by 50% and lost sales by 65% with better product availability is achievable with machine learning.
  • Automating quality testing using machine learning is increasing defect detection rates up to 90%.

Bottom line: Machine learning algorithms, applications, and platforms are helping manufacturers find new business models, fine-tune product quality, and optimize manufacturing operations to the shop floor level.

Manufacturers care most about finding new ways to grow, excel at product quality while still being able to take on short lead-time production runs from customers. New business models often bring the paradox of new product lines that strain existing ERP, CRM and PLM systems by the need always to improve time-to-customer performance. New products are proliferating in manufacturing today, and delivery windows are tightening. Manufacturers are turning to machine learning to improve the end-to-end performance of their operations and find a performance-based solution to this paradox.

The ten ways machine learning is revolutionizing manufacturing in 2018 include the following:

  • Improving semiconductor manufacturing yields up to 30%, reducing scrap rates, and optimizing fab operations are is achievable with machine learning. Attaining up to a 30% reduction in yield detraction in semiconductor manufacturing, reducing scrap rates based on machine learning-based root-cause analysis and reducing testing costs using AI optimization are the top three areas where machine learning will improve semiconductor manufacturing. McKinsey also found that AI-enhanced predictive maintenance of industrial equipment will generate a 10% reduction in annual maintenance costs, up to a 20% downtime reduction and 25% reduction in inspection costs. Source: Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company.

  • Asset Management, Supply Chain Management, and Inventory Management are the hottest areas of artificial intelligence, machine learning and IoT adoption in manufacturing today. The World Economic Forum (WEF) and A.T. Kearney’s recent study of the future of production find that manufacturers are evaluating how combining emerging technologies including IoT, AI, and machine learning can improve asset tracking accuracy, supply chain visibility, and inventory optimization. Source: Technology and Innovation for the Future of Production: Accelerating Value Creation (38 pp., PDF, no opt-in) World Economic Forum with A.T. Kearney.

  • Manufacturer’s adoption of machine learning and analytics to improve predictive maintenance is predicted to increase 38% in the next five years according to PwC. Analytics and MI-driven process and quality optimization are predicted to grow 35% and process visualization and automation, 34%. PwC sees the integration of analytics, APIs and big data contributing to a 31% growth rate for connected factories in the next five years. Source: Digital Factories 2020: Shaping the future of manufacturing (48 pp., PDF, no opt-in) PriceWaterhouseCoopers

  • McKinsey predicts machine learning will reduce supply chain forecasting errors by 50% and reduce lost sales by 65% with better product availability. Supply chains are the lifeblood of any manufacturing business. Machine learning is predicted to reduce costs related to transport and warehousing and supply chain administration by 5 to 10% and 25 to 40%, respectively. Due to machine learning, overall inventory reductions of 20 to 50% are possible. Source: Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company.

  • Improving demand forecast accuracy to reduce energy costs and negative price variances using machine learning uncovers price elasticity and price sensitivity as well. Honeywell is integrating AI and machine-learning algorithms into procurement, strategic sourcing and cost management. Source: Honeywell Connected Plant: Analytics and Beyond. (23 pp., PDF, no opt-in) 2017 Honeywell User’s Group.

  • Automating inventory optimization using machine learning has improved service levels by 16% while simultaneously increasing inventory turns by 25%. AI and machine learning constraint-based algorithms and modeling are making it possible scale inventory optimization across all distribution locations, taking into account external, independent variables that affect demand and time-to-customer delivery performance. Source: Transform the manufacturing supply chain with Multi-Echelon inventory optimization, Microsoft, March 1, 2018.

  • Combining real-time monitoring and machine learning is optimizing shop floor operations, providing insights into machine-level loads and production schedule performance. Knowing in real-time how each machine’s load level impacts overall production schedule performance leads to better decisions managing each production run. Optimizing the best possible set of machines for a given production run is now possible using machine learning algorithms. Source: Factories of the Future: How Symbiotic Production Systems, Real-Time Production Monitoring, Edge Analytics and AI Are Making Factories Intelligent and Agile, (43 pp., PDF, no opt-in) Youichi Nonaka, Senior Chief Researcher, Hitachi R&D Group and Sudhanshu Gaur Director, Global Center for Social Innovation Hitachi America R&D

  • Improving the accuracy of detecting costs of performance degradation across multiple manufacturing scenarios reduces costs by 50% or more. Using real-time monitoring technologies to create accurate data sets that capture pricing, inventory velocity, and related variables gives machine learning apps what they need to determine cost behaviors across multiple manufacturing scenarios. Source: Leveraging AI for Industrial IoT (27 pp., PDF, no opt-in) Chetan Gupta, Ph.D. Chief Data Scientist, Big Data Lab, Hitachi America Ltd. Date: Sept. 19th, 2017

  • A manufacturer was able to achieve a 35% reduction in test and calibration time via accurate prediction of calibration and test results using machine learning. The project’s goal was to reduce test and calibration time in the production of mobile hydraulic pumps. The methodology focused on using a series of machine learning models that would predict test outcomes and learn over time. The process workflow below was able to isolate the bottlenecks, streamlining test and calibration time in the process. Source: The Value Of Data Science Standards In Manufacturing Analytics (13 pp., PDF, no opt-in) Soundar Srinivasan, Bosch Data Mining Solutions And Services

  • Improving yield rates, preventative maintenance accuracy and workloads by the asset is now possible by combining machine learning and Overall Equipment Effectiveness (OEE). OEE is a pervasively used metric in manufacturing as it combines availability, performance, and quality, defining production effectiveness. Combined with other metrics, it’s possible to find the factors that impact manufacturing performance the most and least. Integrating OEE and other datasets in machine learning models that learn quickly through iteration are one of the fastest growing areas of manufacturing intelligence and analytics today. Source: TIBCO Manufacturing Solutions, TIBCO Community, January 30, 2018

Additional reading:

Artificial Intelligence (AI) Delivering Breakthroughs in Industrial IoT (26 pp., PDF, no opt-in) Hitachi

Artificial Intelligence and Robotics and Their Impact on the Workplace (120 pp., PDF, no opt-in) IBA Global Employment Institute

Artificial Intelligence: The Next Digital Frontier? (80 pp., PDF, no opt-in) McKinsey and Company

Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing (20 pp., PDF, no opt-in), Applied Materials, Applied Global Services

Connected Factory and Digital Manufacturing: A Competitive Advantage, Shantanu Rai, HCL Technologies (36 pp., PDF, no opt-in)

Demystifying AI, Machine Learning, and Deep Learning, DZone, AI Zone

Digital Factories 2020: Shaping the future of manufacturing (48 pp., PDF, no opt-in) PriceWaterhouseCoopers

Emerging trends in global advanced manufacturing: Challenges, Opportunities, And Policy Responses (76 pp., PDF, no opt-in) University of Cambridge

Factories of the Future: How Symbiotic Production Systems, Real-Time Production Monitoring, Edge Analytics and AI Are Making Factories Intelligent and Agile, (43 pp., PDF, no opt-in) Youichi Nonaka, Senior Chief Researcher, Hitachi R&D Group and Sudhanshu Gaur Director, Global Center for Social Innovation Hitachi America R&D

Get started with the Connected factory preconfigured solution, Microsoft Azure

Honeywell Connected Plant: Analytics and Beyond. (23 pp., PDF, no opt-in) 2017 Honeywell User’s Group.

Impact of the Fourth Industrial Revolution on Supply Chains (22 pp., PDF, no opt-in) World Economic Forum

Leveraging AI for Industrial IoT (27 pp., PDF, no opt-in) Chetan Gupta, Ph.D. Chief Data Scientist, Big Data Lab, Hitachi America Ltd. Date: Sept. 19th, 2017

Machine Learning & Artificial Intelligence Presentation (14 pp., PDF, no opt-in) Erik Hjerpe Volvo Car Group

Machine Learning Techniques in Manufacturing Applications & Caveats, (44 pp., PDF, no opt-in), Thomas Hill, Ph.D. | Exec. Director Analytics, Dell

Machine learning: the power and promise of computers that learn by example (128 pp., PDF, no opt-in) Royal Society UK

Predictive maintenance and the smart factory (8 pp., PDF, no opt-in) Deloitte

Priore, P., Gómez, A., Pino, R., & Rosillo, R. (2014). Dynamic scheduling of manufacturing systems using machine learning: An updated reviewAi Edam28(1), 83-97.

Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company

Technology and Innovation for the Future of Production: Accelerating Value Creation (38 pp., PDF, no opt-in) World Economic Forum with A.T. Kearney

The Future of Manufacturing; Making things in a changing world (52 pp., PDF, no opt-in) Deloitte University Press

The transformative potential of AI in the manufacturing industry, Microsoft, by Sanjay Ravi, Managing Director, Worldwide Discrete Manufacturing, Microsoft, September 25, 2017

The Value Of Data Science Standards In Manufacturing Analytics (13 pp., PDF, no opt-in) Soundar Srinivasan, Bosch Data Mining Solutions And Services

TIBCO Manufacturing Solutions, TIBCO Community, January 30, 2018

Transform the manufacturing supply chain with Multi-Echelon inventory optimization, Microsoft, March 1, 2018.

Turning AI into concrete value: the successful implementers’ toolkit (28 pp., PDF, no opt-in) Capgemini Consulting

Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applicationsProduction & Manufacturing Research4(1), 23-45.

Roundup Of Internet Of Things Forecasts And Market Estimates, 2018

 

  • According to IDC, worldwide spending on the IoT is forecast to reach $772.5B in 2018. That represents an increase of 15% over the $674B that was spent on IoT in 2017.
  • The global IoT market will grow from $157B in 2016 to $457B by 2020, attaining a Compound Annual Growth Rate (CAGR) of 28.5%.
  • Discrete Manufacturing, Transportation and Logistics, and Utilities will lead all industries in IoT spending by 2020, averaging $40B each.
  • Bain predicts B2B IoT segments will generate more than $300B annually by 2020, including about $85B in the industrial sector.
  • Internet Of Things Market To Reach $267B By 2020 according to Boston Consulting Group.
  • According to IDC FutureScape: Worldwide IoT 2018 Predictions, By the end of 2020, close to 50% of new IoT applications built by enterprises will leverage an IoT platform that offers outcome-focused functionality based on comprehensive analytics capabilities.

The last twelve months of Internet of Things (IoT) forecasts and market estimates reflect enterprises’ higher expectations for scale, scope and Return on Investment (ROI) from their IoT initiatives. Business benefits and outcomes are what drives the majority of organizations to experiment with IoT and invest in large-scale initiatives. That expectation is driving a new research agenda across the many research firms mentioned in this roundup. The majority of enterprises adopting IoT today are using metrics and key performance indicators (KPIs) that reflect operational improvements, customer experience, logistics, and supply chain gains. Key takeaways from the collection of IoT forecasts and market estimates include the following:

  • The global IoT market will grow from $157B in 2016 to $457B by 2020, attaining a Compound Annual Growth Rate (CAGR) of 28.5%. According to GrowthEnabler & MarketsandMarkets analysis, the global IoT market share will be dominated by three sub-sectors; Smart Cities (26%), Industrial IoT (24%) and Connected Health (20%). Followed by Smart Homes (14%), Connected Cars (7%), Smart Utilities (4%) and Wearables (3%). Source: GrowthEnabler, Market Pulse Report, Internet of Things (IoT), 19 pp., PDF, free, no opt-in.

  • Bain predicts B2B IoT segments will generate more than $300B annually by 2020, including about $85B in the industrial sector. Advisory firm Bain predicts the most competitive areas of IoT will be in the enterprise and industrial segments. Bain predicts consumer applications will generate $150B by 2020, with B2B applications being worth more than $300B. Globally, enthusiasm for the Internet of Things has fueled more than $80B in merger and acquisition (M&A) investments by major vendors and more than $30B in venture capital, according to Bain’s estimates. Source: Bain Insights: Choosing The Right Platform For The Internet Of Things

  • The global IoT market is growing at a 23% CAGR of 23% between 2014-2019, enabling smart solutions in major industries including agriculture, automotive and infrastructure. ― Key challenges to growth are the security and scalability of all-new connected devices and the adherence to open standards to facilitate large-scale monitoring of different systems. Source: Export opportunities of the Dutch ICT sector to Germany (25-04-17), PDF, 95 pp., no opt-in

  • According to  Variant Market Research, the Global Internet of Things (IoT) market is estimated to reach $1,599T by 2024, from $346.1B in 2016, attaining a CAGR of 21.1% from 2016 to 2024. Asia-Pacific is predicted to grow at the fastest CAGR over the forecast period 2016 to 2024. The growth is attributed to increasing adoption of IoT in emerging countries such as India and China, high rate of mobile and internet usage, and development of next-generation technologies. Source: Global Internet of Things (IoT) Market: Rising Adoption of Cloud Platform Noticed by Variant Market Research. 

  • Discrete Manufacturing, Transportation and Logistics, and Utilities will lead all industries in IoT spending by 2020, averaging $40B each. Improving the accuracy, speed, and scale of supply chains is an area many organizations are concentrating on with IoT. IoT has the potential to redefine quality management, compliance, traceability and Manufacturing Intelligence. Business-to-Consumer (B2C) companies are projected to spend $25B on IoT in 2020, up from $5B in 2015. The following graphic compares global spending by vertical between 2015 and 2020. Source: Statista, Spending on the Internet of Things worldwide by vertical in 2015 and 2020 (in billion U.S. dollars).

 

  • By 2020, 50% of IoT spending will be driven by discrete manufacturing, transportation, and logistics, and utilities BCG predicts that IoT will have the most transformative effect on industries that aren’t technology-based today. The most critical success factor all these use cases depend on secure, scalable and reliable end-to-end integration solutions that encompass on-premise, legacy and cloud systems, and platforms.Source: Internet Of Things Market To Reach $267B By 2020.

  • The hottest application areas for IoT in manufacturing include Industrial Asset Management, Inventory and Warehouse Management and Supply Chain Management. In high tech manufacturing, Smart Products, and Industrial Asset Management are the hottest application areas. The following Forrester heat Map for 2017 shows the fastest growing areas of IoT adoption by industry. Source: IoT Opportunities, Trends, and Momentum Robert E Stroud CGEIT CRISC.

  • B2B spending on IoT technologies, apps and solutions will reach €250B ($296.8B) by 2020 according to a recent study by Boston Consulting Group (BCG). IoT Analytics spending is predicted to generate €20B ($23.7B) by 2020. Between 2015 to 2020, BCG predicts revenue from all layers of the IoT technology stack will have attained at least a 20% Compound Annual Growth Rate (CAGR). B2B customers are the most focused on services, IoT analytics, and applications, making these two areas of the technology stack the fastest growing. By 2020, these two layers will have captured 60% of the growth from IoT. Source: Internet Of Things Market To Reach $267B By 2020.

  • Manufacturers most relied on the Industrial Internet of Things (IIoT) in 2017 to help better understand machine health (32%) on the shop floor, leading to more accurate Overall Equipment Effectiveness (OEE) measurements. Changing how plant maintenance personnel will work and interact with all levels of operation (29.5%) and helping to better prevent and predict shutdowns (27.1%) are the top three use cases of IIoT according to Plant Engineering and Statista. 

  • Improving customer experiences (70%) and safety (56%) are the two areas enterprises are using data generated from IoT solutions most often today. Gaining cost efficiencies, improving organizational capabilities, and gaining supply chain visibility (all 53%) is the third most popular uses of data generated from IoT solutions today. 53% of enterprises expect data from IoT solutions to increase revenues in the next year. 53% expect data generated from their IoT solutions will assist in increasing revenues in the next year. 51% expect data from IoT solutions will open up new markets in the next year. 42% of enterprises are spending an average of $3.1M annually on IoT. Source: 70% Of Enterprises Invest In IoT To Improve Customer Experiences.

  • McKinsey Global Institute estimates IoT could have an annual economic impact of $3.9T to $11.1T by 2025. Their forecast scenario includes diverse settings and use cases including factories, cities, retail environments, and the human body. Factories alone could contribute between $1.2T to $3.7T in IoT-driven value. Source: McKinsey & Company, What’s New With The Internet of Things?

  • Business Intelligence Competency Centers (BICC), R&D, Marketing & Sales and Strategic Planning are most likely to see the importance of IoT. Finance is considered among the least likely departments to see the importance of IoT. The study also found that sales analytics apps are increasingly relying on IoT technologies as foundational components of their core application platforms.These and many other insights are from Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study. The study defines IoT as the network of physical objects, or “things,” embedded with electronics, software, sensors, and connectivity to enable objects to collect and exchange data. The study examines key related technologies such as location intelligence, end-user data preparation, cloud computing, advanced and predictive analytics, and big data analytics. Please see page 11 of the study for details regarding the methodology.

  • Manufacturing, Consulting, Business Services and Distribution/Logistics are IoT industry adoption leaders. Conversely, Federal Government, State & Local Government are least likely to prioritize IoT initiatives as very important or critical. IoT early adopters are most often defining goals with clear revenue and competitive advantages to drive initiatives. Manufacturing, Consulting, Business Services and Distribution/Logistics are challenging, competitive industries where revenue growth is often tough to achieve. IoT initiatives that deliver revenue and competitive strength quickly are the most likely to get funding and support. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • IoT advocates or early adopters say location intelligence, streaming data analysis, and cognitive BI to deliver the greatest business benefit. Conversely, IoT early adopters aren’t expecting to see as significant of benefits from data warehousing as they are from other technologies. Consistent with previous studies, both the broader respondent base and IoT early adopters place a high priority on reporting and dashboards. IoT early adopters also see the greater importance of visualization and end-user self-service. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • Business Intelligence Competency Centers (BICC), Manufacturing and Supply Chain are among the most powerful catalysts of BI and IoT adoption in the enterprise. The greater the level of BI adoption across the 12 functional drivers of BI adoption defined in the graphic below, the greater the potential for IoT to deliver differentiated value based on unique needs by area. Marketing, Sales and Strategic Planning are also strong driver areas among IoT advocates or early adopters. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • IoT early adopters are relying on growing revenue and increasing competitive advantage as the two main goals to drive IoT initiatives’ success. The most successful IoT advocates or early adopters evangelize the many benefits of IoT initiatives from a revenue growth position first. IoT early adopters are more likely to see and promote the value of better decision-making, improved operational efficiencies, increased competitive advantage, growth in revenues, and enhanced customer service when BI adoption excels, setting the foundation for IoT initiatives to succeed. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • The most popular feature requirements for advanced and predictive analytics applications include regression models, textbook statistical functions, and hierarchical clustering. More than 90% of respondents replied that these three leading features are “somewhat important” to their daily use of analytics. Geospatial analysis (highly associated with mapping, populations, demographics, and other Web-generated data), recommendation engines, Bayesian methods, and automatic feature selection is the next most required series of features. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • 74% of IoT advocates or early adopters say location intelligence is critical or very important. Conversely, only 26% of the overall sample ranks location intelligence at the same level of importance. One of the most promising use cases for IoT-based location intelligence is its potential to streamline traceability and supply chain compliance workflows in highly regulated manufacturing industries. In 2018, expect to see ERP and Supply Chain Management (SCM) software vendors launch new applications that capitalize on IoT location intelligence to streamline traceability and supply chain compliance on a global scale. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

Sources:

10 Predictions For The Internet Of Things (IoT) In 2018

2017 Internet Of Things (IoT) Intelligence Update

Bain Insights, Three Ways Telcos Can Win On The Internet Of Things [Infographic]

Bain Insights: Choosing The Right Platform For The Internet Of Things

Big Data & Analytics Is The Most Wanted Expertise By 75% Of IoT Providers

Cambridge Consultants, Review of latest developments in the Internet of Things, 7 March 2017, 143 pp., free, no opt-in.

Cognizant Trend Study: Digital Industrial Transformation with the Internet of Things: How can European companies benefit from IoT?

Ernst & Young,  Internet of Things Human-machine interactions that unlock possibilities –  Media & Entertainment. 24 pp., PDF, no opt-in.

GrowthEnabler, Market Pulse Report, Internet of Things (IoT), 19 pp., PDF, free, no opt-in

IDC, Worldwide Spending on the Internet of Things Forecast to Reach Nearly $1.4 Trillion in 2021, According to New IDC Spending Guide

IHS Markit IoT Trend Watch 2017, pdf, 26 pp., free, no opt-in

Internet Of Things Market To Reach $267B By 2020

Internet Of Things Will Revolutionize Retail

PwC, Leveraging the Upcoming Disruptions from AI and IoT, 20 pp., PDF, free, no opt-in

McKinsey & Company, Beyond The Supercycle: How Technology Is Reshaping Resources

McKinsey & Company,  Digital machinery: How companies can win the changing manufacturing game

McKinsey & Company, Taking the pulse of enterprise IoT

McKinsey & Company, What’s New With The Internet of Things?

IoT: Landscape and Nasscom Initiatives, May 2017. 36 pp., PDF, free, no opt-in

Stanford University Course EE392B, Industrial IoT: Applications Overview April 4, 2017, Dimitry Gorinevsky

Verizon, State of the Market: Internet of Things 2017 Making way for the enterprise

What Makes An Internet Of Things (IoT) Platform Enterprise-Ready?

Woodside Capital Partners, The Industrial Internet of Things: Making Factories “Smart” For The Next Industrial Revolution, PDF, 126 pp., free, no opt-in

THE INTERNET OF THINGS 2017 REPORT: How the IoT is improving lives to transform the world

The IoT Platforms Report: How software is helping the Internet of Things evolve

 

 

 

 

5 Ways Integration Is Enabling The Factory Of The Future

  • factory-of-the-future-report93% of global product leaders say that predictive maintenance combined with real-time equipment monitoring enabled by integration is a must-have for factory planning today.
  • 75% of global product leaders plan to implement factory of the future initiatives and programs in the next five years or less, starting with Industry 4.0
  • 67% of automotive executives expect that new technologies enabled by real-time integration will enable their teams to reach and exceed lean management and continuous improvement goals starting this year and accelerating through 2030.

Boston Consulting Group’s recent article, The Factory of the Future provides insights into a recent global survey the consulting firm conducted of more than 750 manufacturing product leaders from leading companies in three industrial sectors: automotive (which includes suppliers and original equipment manufacturers, or OEMs), engineered products, and process industries. The survey’s objective is to define the vision for the factory of the future in 2030.  Determining long-term benefits and the roadmap to implementation are also goals of the study Boston Consulting Group (BCG) and its research partner, the Laboratory for Machine Tools and Production Engineering at RWTH Aachen University, achieved. The Factory of the Future is a vision for how manufacturers should enhance production by making improvements in three dimensions: plant structure, plant digitization, and plant processes.

5 Ways Integration Fuels The Factory Of The Future’s Growth

Real-time integration based on intelligent objects that connect diverse enterprise systems including SAP, Salesforce and others is the foundation that manufacturing companies must adopt to excel in their Factory of the Future efforts. These real-time objects illustrate the future of Application Programmer Interfaces (API).  APIs that will fuel and drive the Factory of the Future will enrich each real-time integration points across manufacturing networks. Intelligent Objects pervasively used today are the precursors to the most valuable APIs that will enable Factories of the Future tomorrow. With APIs continually improving and gaining the capability to provide insight and intelligence, the essential role of real-time integration in all factories of the future becomes clear.

The following are the five ways integration is enabling the Factory of the Future today:

  1. Real-time integration enables the value chains supporting the Factories of the Future to continually accelerate, excel and improve with additional insight that drives future growth strategies. Bringing greater intelligence into each integration point across the value chains supporting the Factories of the Future leads to new technologies delivering greater lean management benefits. Real-time integration will deliver strong benefits in the areas of lean management, predictive maintenance, modular line setups, and the orchestration and collaboration of smart robots.

factory-of-the-future-1

  1. The Implementation Roadmap for the Factory of the Future shows how critical real-time integration is to the Factory of the Future’s vision being attained. Multidirectional layouts, modular line setups, sustainable production, the orchestration of smart and collaborative robotics and attainment of big data and analytics plans all are dependent on real-time integration. The following graphic from the study illustrates just how central integration is to the optimizing of plant structure and plant digitization.

factory-of-the-future-2

  1. By integrating large-scale enterprise systems including those from SAP, Salesforce and others with legacy, 3rd party and homegrown systems, every area of production quality will improve. The most urgent need global manufacturers have is finding new ways to improve product, process and service quality without raising costs. Improving the quality of these three dimensions makes any manufacturer more trusted and successful in selling next-generation products.  By aggregating data using real-time integration so that Big Data and advanced analytics can be used to find new patterns, some of the world’s most well-known manufacturers are excelling on product quality. To produce cylinder heads at its plant in Untertürkheim, Germany, Mercedes-Benz uses predictive analytics to examine more than 600 parameters that influence quality. Mercedes-Benz is an early adopter of using Big Data and advanced analytics to improve quality management and bring high precision to engineering. Bosch has implemented software that analyzes data about its production of fuel injectors in real time. The software monitors process adherence and recognizes trends. It automatically transmits information about deviations to operators, allowing them to improve the process accordingly.
  1. Real-time integration across and within manufacturing systems enables multi-directional layouts of production workflows. The Audi R8 manufacturing facility in Heilbronn, Germany, does not have a fixed conveyor so the teams there has greater multidirectional flexibility in building customized vehicles.  Real-time integration across the Audi factory floor is essential to provide R8 production teams with the specifics of how they can best collaborate and deliver the highest quality vehicles in the shortest amount of time. Real-time integration is enabling driverless transport systems, guided by a laser scanner and radio frequency identification technology in the floor, which moves the car bodies through the assembly process. These systems enable assembly layout changes quickly with no impact on existing production. Enabling real-time integration often involves extensive field mapping between different systems, which is a lengthy and error-prone process. Integration technology provider enosiX has developed a unique, real-time integration technology that obsoletes the need for field mapping and supports bi-directional data updates.
  1. Enabling the Factory of the Future’s production operations to flex in response to rapidly changing customer requirements is entirely dependent on real-time, reliable integration of production and customer-facing systems. The implications of the study on the future of manufacturing underscore just how critical it is for manufacturers to be agile enough to create entirely new business models while gaining insight and intelligence into how they can continually improve lean manufacturing. When real-time integration unifies a value chain for any manufacturer, their speed, scale and ability to simplify the complex processes required to serve customers turns into a formidable competitive advantage.

 

%d bloggers like this: