Skip to content

Posts from the ‘Analytics’ Category

Roundup Of Analytics, Big Data & BI Forecasts And Market Estimates, 2016

  • World map technologyBig Data & business analytics software worldwide revenues will grow from nearly $122B in 2015 to more than $187B in 2019, an increase of more than 50% over the five-year forecast period.
  • The market for prescriptive analytics software is estimated to grow from approximately $415M in 2014 to $1.1B in 2019, attaining a 22% CAGR.
  • By 2020, predictive and prescriptive analytics will attract 40% of enterprises’ net new investment in business intelligence and analytics.

Making enterprises more customer-centric, sharpening focus on key initiatives that lead to entering new markets and creating new business models, and improving operational performance are three dominant factors driving analytics, Big Data, and business intelligence (BI) investments today. Unleashing the insights hidden in unstructured data is providing enterprises with the potential to compete and improve in areas they had limited visibility into before. Examples of these areas include the complexity of B2B selling and service relationships,  healthcare services, and maintenance, repair, and overhaul (MRO) of complex machinery.

Presented below are a roundup of recent analytics and big data forecasts and market estimates:

  • The global big data market will grow from $18.3B in 2014 to $92.2B by 2026, representing a compound annual growth rate of 14.4 percent. Wikibon predicts significant growth in all four sub-segments of big data software through 2026. Data management (14% CAGR), core technologies such as Hadoop, Spark and streaming analytics (24% CAGR), databases (18% CAGR) and big data applications, analytics and tools (23% CAGR) are the four fastest growing sub-segments according to Wikibon. Source: Wikibon forecasts Big Data market to hit $92.2B by 2026.

Wikibon big data forecast 2016

  • In 2015, the Global Analytics and Business Intelligence applications market grew 4% to approach nearly $11.6B in license, maintenance and subscription revenues with SAP maintaining market leadership. SAP led the marketing with 10% market share and $1.2B in Analytics and Business Intelligence (BI) product revenues, riding on a 23% jump in license, maintenance, and subscription revenues. SAS Institute was No. 2 achieving 9% share; IBM was the third at 8%, and Oracle and Microsoft were fourth and fifth place with 7% and 5%, respectively. Source: Apps Run The World: Top 10 Analytics and BI Software Vendors and Market Forecast 2015-2020.

analytics market shares

IDC FutureScape

  • The Total Data market is expected to nearly double in size, growing from $69.6B in revenue in 2015 to $132.3B in 2020. The specific market segments included in 451 Research’s analysis are operational databases, analytic databases, reporting and analytics, data management, performance management, event/stream processing, distributed data grid/cache, Hadoop, and search-based data platforms and analytics. Source: Total Data market expected to reach $132bn by 2020; 451 Research, June 14, 2016.

Worldwide total revenue by segment

overall adoption of big data

  • Improving customer relationships (55%) and making the business more data-focused (53%) are the top two business goals or objectives driving investments in data-driven initiatives today. 78% of enterprises agree that collection and analysis of Big Data have the potential to change fundamentally the way they do business over the next 1 to 3 years. Source: IDG Enterprise 2016 Data & Analytics Research, July 5, 2016.

Data Helps Customer Focused Organizations

  • Venture capital (VC) investment in Big Data accelerated quickly at the beginning of the year with DataDog ($94M), BloomReach ($56M), Qubole ($30M), PlaceIQ ($25M) and others receiving funding. Big Data startups received $6.64B in venture capital investment in 2015, 11% of total tech VC.  M&A activity has remained moderate (FirstMark noted 35 acquisitions since their latest landscape was published last year). Source: Matt Turck’s blog post, Is Big Data Still a Thing? (The 2016 Big Data Landscape).

big data landscape

  • IDC forecasts global spending on cognitive systems will reach nearly $31.3 billion in 2019 with a five-year compound annual growth rate (CAGR) of 55%. More than 40% of all cognitive systems spending throughout the forecast will go to software, which includes both cognitive applications (i.e., text and rich media analytics, tagging, searching, machine learning, categorization, clustering, hypothesis generation, question answering, visualization, filtering, alerting, and navigation). Also included in the forecasts are cognitive software platforms, which enable the development of intelligent, advisory, and cognitively enabled solutions.  Source:  Worldwide Spending on Cognitive Systems Forecast to Soar to More Than $31 Billion in 2019, According to a New IDC Spending Guide.
  • Big Data Analytics & Hadoop Market accounted for $8.48B in 2015 and is expected to reach $99.31B by 2022 growing at a CAGR of 42.1% from 2015 to 2022. The rise of big data analytics and rapid growth in consumer data capture and taxonomy techniques are a few of the many factors fueling market growth. Source: Stratistics Market Research Consulting (PDF, opt-in, payment reqd).

Additional sources of market information: 

Analytics Trends 2016 The Next Evolution, Deloitte.

Big data analytics, Ericsson White Paper Uen 288 23-3211 Rev B | October 2015

Big Data and the Intelligence Economy in Canada Big Data: Big Opportunities to Create Business Value, EMC.

The Forrester Wave™: Big Data Hadoop Distributions, Q1 2016

The Forrester Wave™: Big Data Hadoop Cloud Solutions, Q2 2016

The Forrester Wave™: Big Data Text Analytics Platforms, Q2 2016

The Forrester Wave™: Big Data Streaming Analytics, Q1 2016

The Forrester Wave™: Customer Analytics Solutions, Q1 2016

From Big Data to Better Decisions: The ultimate guide to business intelligence today (Domo)

Gartner Hype Cycle for Business Intelligence and Analytics, 2015

IBM: Extracting business value from the 4 V’s of big data

IDC Worldwide Big Data Technology and Services 2012 – 2015 Forecast

Opportunities in Telecom Sector: Arising from Big Data. Deloitte, November 2015

Who will win as Finance doubles down on analytics?

10 Ways Machine Learning Is Revolutionizing Manufacturing

machine learningBottom line: Every manufacturer has the potential to integrate machine learning into their operations and become more competitive by gaining predictive insights into production.

Machine learning’s core technologies align well with the complex problems manufacturers face daily. From striving to keep supply chains operating efficiently to producing customized, built- to-order products on time, machine learning algorithms have the potential to bring greater predictive accuracy to every phase of production. Many of the algorithms being developed are iterative, designed to learn continually and seek optimized outcomes. These algorithms iterate in milliseconds, enabling manufacturers to seek optimized outcomes in minutes versus months.

The ten ways machine learning is revolutionizing manufacturing include the following:

  • Increasing production capacity up to 20% while lowering material consumption rates by 4%. Smart manufacturing systems designed to capitalize on predictive data analytics and machine learning have the potential to improve yield rates at the machine, production cell, and plant levels. The following graphic from General Electric and cited in a National Institute of Standards (NIST) provides a summary of benefits that are being gained using predictive analytics and machine learning in manufacturing today.

typical production improvemensSource: Focus Group: Big Data Analytics for Smart Manufacturing Systems

  • Providing more relevant data so finance, operations, and supply chain teams can better manage factory and demand-side constraints. In many manufacturing companies, IT systems aren’t integrated, which makes it difficult for cross-functional teams to accomplish shared goals. Machine learning has the potential to bring an entirely new level of insight and intelligence into these teams, making their goals of optimizing production workflows, inventory, Work In Process (WIP), and value chain decisions possible.

factory and demand analytics

Source:  GE Global Research Stifel 2015 Industrials Conference

  • Improving preventative maintenance and Maintenance, Repair and Overhaul (MRO) performance with greater predictive accuracy to the component and part-level. Integrating machine learning databases, apps, and algorithms into cloud platforms are becoming pervasive, as evidenced by announcements from Amazon, Google, and Microsoft. The following graphic illustrates how machine learning is integrated into the Azure platform. Microsoft is enabling Krones to attain their Industrie 4.0 objectives by automating aspects of their manufacturing operations on Microsoft Azure.

Azure IOT Services

Source: Enabling Manufacturing Transformation in a Connected World John Shewchuk Technical Fellow DX, Microsoft

  • Enabling condition monitoring processes that provide manufacturers with the scale to manage Overall Equipment Effectiveness (OEE) at the plant level increasing OEE performance from 65% to 85%. An automotive OEM partnered with Tata Consultancy Services to improve their production processes that had seen Overall Equipment Effectiveness (OEE) of the press line reach a low of 65 percent, with the breakdown time ranging from 17-20 percent.  By integrating sensor data on 15 operating parameters (such as oil pressure, oil temperature, oil viscosity, oil leakage, and air pressure) collected from the equipment every 15 seconds for 12 months. The components of the solution are shown

OEE Graphic

Source: Using Big Data for Machine Learning Analytics in Manufacturing

  • Machine learning is revolutionizing relationship intelligence and Salesforce is quickly emerging as the leader. The series of acquisitions Salesforce is making positions them to be the global leader in machine learning and artificial intelligence (AI). The following table from the Cowen and Company research note, Salesforce: Initiating At Outperform; Growth Engine Is Well Greased published June 23, 2016, summarizes Salesforce’s series of machine learning and AI acquisitions, followed by an analysis of new product releases and estimated revenue contributions. Salesforce’s recent acquisition of e-commerce provider Demandware for $2.8B is analyzed by Alex Konrad is his recent post,     Salesforce Will Acquire Demandware For $2.8 Billion In Move Into Digital Commerce. Cowen & Company predicts Commerce Cloud will contribute $325M in revenue by FY18, with Demandware sales being a significant contributor.

Salesforce AI Acquisitions

Salesforce revenue sources

  • Revolutionizing product and service quality with machine learning algorithms that determine which factors most and least impact quality company-wide. Manufacturers often are challenged with making product and service quality to the workflow level a core part of their companies. Often quality is isolated. Machine learning is revolutionizing product and service quality by determining which internal processes, workflows, and factors contribute most and least to quality objectives being met. Using machine learning manufacturers will be able to attain much greater manufacturing intelligence by predicting how their quality and sourcing decisions contribute to greater Six Sigma performance within the Define, Measure, Analyze, Improve, and Control (DMAIC) framework.
  • Increasing production yields by the optimizing of team, machine, supplier and customer requirements are already happening with machine learning. Machine learning is making a difference on the shop floor daily in aerospace & defense, discrete, industrial and high-tech manufacturers today. Manufacturers are turning to more complex, customized products to use more of their production capacity, and machine learning help to optimize the best possible selection of machines, trained staffs, and suppliers.
  • The vision of Manufacturing-as-a-Service will become a reality thanks to machine learning enabling subscription models for production services. Manufacturers whose production processes are designed to support rapid, highly customized production runs are well positioning to launch new businesses that provide a subscription rate for services and scale globally. Consumer Packaged Goods (CPG), electronics providers and retailers whose manufacturing costs have skyrocketed will have the potential to subscribe to a manufacturing service and invest more in branding, marketing, and selling.
  • Machine learning is ideally suited for optimizing supply chains and creating greater economies of scale.  For many complex manufacturers, over 70% of their products are sourced from suppliers that are making trade-offs of which buyer they will fulfill orders for first. Using machine learning, buyers and suppliers could collaborate more effectively and reduce stock-outs, improve forecast accuracy and met or beat more customer delivery dates.
  • Knowing the right price to charge a given customer at the right time to get the most margin and closed sale will be commonplace with machine learning.   Machine learning is extending what enterprise-level price optimization apps provide today.  One of the most significant differences is going to be just how optimizing pricing along with suggested strategies to close deals accelerate sales cycles.

Additional reading:

Cisco Blog: Deus Ex Machina: Machine Learning Acts to Create New Business Outcomes

Enabling Manufacturing Transformation in a Connected World John Shewchuk Technical Fellow DX, Microsoft 

Focus Group: Big Data Analytics for Smart Manufacturing Systems

GE Predix: The Industrial Internet Platform

IDC Manufacturing Insights reprint courtesy of Cisco: Designing and Implementing the Factory of the Future at Mahindra Vehicle Manufacturers

Machine Learning: What It Is And Why It Matters

McKinsey & Company, An Executive’s Guide to Machine Learning

MIT Sloan Management Review, Sales Gets a Machine-Learning Makeover

Stanford University CS 229 Machine Learning Course Materials
The Economist Feature On Machine Learning

UC Berkeley CS 194-10, Fall 2011: Introduction to Machine Learning
Lecture slides, notes

University of Washington CSE 446 – Machine Learning – Winter 2014


Lee, J. H., & Ha, S. H. (2009). Recognizing yield patterns through hybrid applications of machine learning techniques. Information Sciences, 179(6), 844-850.

Mackenzie, A. (2015). The production of prediction: What does machine learning want?. European Journal of Cultural Studies, 18(4-5), 429-445.

Pham, D. T., & Afify, A. A. (2005, July). Applications of machine learning in manufacturing. In Intelligent Production Machines and Systems, 1st I* PROMS Virtual International Conference (pp. 225-230).

Priore, P., de la Fuente, D., Puente, J., & Parreño, J. (2006). A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems. Engineering Applications of Artificial Intelligence, 19(3), 247-255.

The Best Cloud Computing Companies And CEOs To Work For In 2016

careeer startEmployees would most recommend Zerto, FusionOps, Google, OutSystems, AppDirect, Sumo Logic, Cloudera, HyTrust, Tableau Software and Domo to their friends looking for a cloud computing company to work for in 2016. These and other insights are from an analysis completed today to determine the best cloud computing firms and CEOs to work for this year.

To keep the rankings and analysis completely impartial and fair, the latest Computer Reseller News list, The 100 Coolest Cloud Computing Vendors Of 2016 is the basis of the rankings. Cloud computing companies are among the most competitive there are about salaries, performance and sign-on bonuses and a myriad of perks and benefits. They are also attracting senior management teams that have strong leadership skills, many of whom are striving to create distinctive company cultures. The most popular request from Forbes readers are for recommendations of the best cloud computing companies to work for, and that’s what led to this analysis.

Using the 2016 CRN list as a baseline to compare the scores of the (%) of employees who would recommend this company to a friend and (%) of employees who approve of the CEO, the table below is provided. You can find the original data set here. There are many companies listed on the CRN list that doesn’t have than many or any entries on Glassdoor, and they are excluded from the rankings shown below but are in the original data set. If the image below is not visible in your browser, you can view the rankings here.

best cloud computing companies to work for in 2016 large

The highest rated CEOs on Glassdoor as of February 3rd, 2016 include the following:

  • Ziv Kedem, Zerto, 100%
  • Gary Meyers, FusionOps, 100%
  • Christian Chabot, Tableau Software, 100%
  • John Burton, Nintex, 100%
  • Rob Mee, Pivotal, 100%
  • Rajiv Gupta, Skyhigh Networks, 100%
  • Ken Shaw Jr., Infrascale, 100%
  • Beau Vrolyk, Engine Yard, 100%
  • Ramin Sayar, Sumo Logic, 99%
  • Sundar Pichai, Google, 98%
  • Lew Cirne, New Relic, 97%
  • Daniel Saks, AppDirect, 96%
  • James M. Whitehurst, Red Hat, 96%
  • Marc Benioff, Salesforce, 96%
  • Tom Kemp, Centrify, 95%
  • Jeremy Roche, FinancialForce, 95%

Five Key Take-Aways From North Bridge’s Future Of Cloud Computing Survey, 2015  

  • bostonSaaS is the most pervasive cloud technology used today with a presence in 77.3% of all organizations, an increase of 9% since 2014.
  • IT is moving significant processing to the cloud with 85.9% of web content management, 82.7% of communications, 80% of app development and 78.9% of disaster recovery now cloud-based.
  • Seeking simple and clear relationships, over 50% of enterprises opt for online purchasing or direct to provider purchasing of cloud services. Online buying is projected to increase over the next two years up to 56%.
  • Vendor leadership/consolidation continues to take hold with 75% of enterprises using fewer than ten

These and many other insights are from North Bridge Growth Equity and Venture Partners’ Future of Cloud Computing Survey published on December 15th. North Bridge and Wikibon collaborated on the study, interviewing 952 companies across 38 different nations, with 65% being from the vendor community and 35% of enterprises evaluating and using cloud technologies in their operations  The slide deck is accessible on SlideShare here:

Key takeaways from the study include the following:

  1. Wikibon forecasts the SaaS is worth $53B market today and will grow at an 18% Compound Annual Growth Rate (CAGR) from 2014 to 2026. By 2026, the SaaS market will be worth $298.4B according to the Wikibon forecast. The fastest growing cloud technology segment is Platform-as-a-Service (PaaS), which is valued at $2.3B today, growing at a CAGR of 38% from 2014 to 2026.  Infrastructure-as-a-Service (IaaS) has a market value of $25B and is growing at a 19% CAGR in the forecast period.  Please see the graphic from the report below and a table from Wikibon’s excellent study, Public Cloud Market Forecast 2015-2026 by Ralph Finos published in August.

SaaS Graphic from North Bridge study


Public Cloud Vendor Revenue Projection

  1. Cloud-based applications are becoming more engrained in core business processes across enterprises. The study found that enterprises are migrating significant processing, systems of engagement and systems of insight to the cloud beyond adoption levels of the past.  81.3% of sales and marketing, 79.9% of business analytics, 79.1% of customer service and 73.5% of HR & Payroll activities have transitioned to the cloud. The impact on HR is particularly noteworthy as in 2011; it was the third least likely sector to be disrupted by cloud computing.
  1. 78% of enterprises expect their SaaS investments to deliver a positive Return on Investment (ROI) in less than three months. 58% of those enterprises who have invested in Platform-as-a-Service (PaaS) expect a positive ROI in less than three months.
  1. Top inhibitors to cloud adoption are security (45.2%), regulatory/compliance (36%), privacy (28.7%), lock-in (25.8%) and complexity (23.1%). Concerns regarding interoperability and reliability have fallen off significantly since 2011 (15.7% and 9.9% respectively in 2015).
  1. Total private financing for cloud and SaaS startup has increased 4X over the last five years. North Bridge and Wikibon found that average deal size rose 1.8X in the same period. The following graphic provides an overview of cloud and SaaS finance trends from 2010 to present.

cloud and saas financing


Salesforce On The State Of Analytics, 2015

  • analytics predictions 2015Between 2015 and 2020, the number of data sources analyzed by enterprises will jump 83%.
  • 9 out of 10 enterprise leaders believe analytics is absolutely essential or very important to their overall business strategies and operational outcomes.
  • 54% of marketers say marketing analytics is absolutely critical or very important to creating a cohesive customer journey.
  • High performing enterprises are 5.4x more likely than underperformers to primarily use analytics tools to gain strategic insights from Big Data.

These and many other interesting insights are from the 2015 State of Analytics study from Salesforce Research. Salesforce conducted the study in mid-2015, generating 2,091 responses from business leaders from enterprises (not limited to Salesforce customers). Geographies included in the study include the U.S., Canada, Brazil, U.K., France, Germany, Japan, and Australia.  While Salesforce is a leading provider of analytics, the report strives to deliver useful insights beyond just endorsing their product direction.

10 insights and predictions on the state of analytics include the following:

  • Between 2015 and 2020, the number of data sources analyzed will jump 83%. Salesforce Research found that the number of data sources actively analyzed by businesses has grown just 20% in the last five years. This is projected to accelerate rapidly, attaining a compound annual growth rate of 120% in the 10-year forecast period. High performing enterprises will be relying on a projected 50 different data sources by 2020, leading all performance categories tracked in the study.

data explosion

  • Relying on manual processes to get all the data in one view (53%) is one of the greatest challenges enterprises face today. Additional factors driving enterprises to integrate more data sources into their analytics applications include finding that too much data is left unanalyzed (53%), spending too much time updating spreadsheets (52%), and analysis is performance by business analysts, not end users of the data (50%).  All of these factors and those shown in the graphic below form the catalyst that is driving greater legacy, 3rd party and broader enterprise data integration into analytics applications.

lack of automation

  • 9 out of 10 enterprise leaders believe analytics is absolutely essential or very important to their overall business strategies and operational outcomes. In addition, 84% of high performers are projecting that the importance of analytics will increase substantially or somewhat in the next two years. 65% of all business leaders surveyed are predicting that the importance of analytics will increase substantially or somewhat in the next two years.

analytics is critical to driving business strategy

  • High performing enterprises are 4.6x more likely than underperformers to agree that data is driving their business decisions. In addition, 60% of high performing enterprises’ leaders agree with the statement that their organizations have moved beyond numbers keeping score to data driving business decisions. Salesforce Research also found that 43% of high performers rely on empirical data, developing hypotheses and then experimenting and observing the outcomes before making a decision.

data drives decisions

  • Driving operational efficiencies and facilitating growth (both 37%) are the two areas enterprises are initially focused on with analytics today.  Once analytics apps are delivering insights and are part of daily workflows, enterprises expand their use into optimizing operational processes (35%), identifying new revenue streams (33%) and predicting customer behavior (32%). The following graphic provides a comparison of the top ten use cases.

analytics every corner

  • High performance enterprises consistently analyze more than 17 different kinds of data across their analytics apps.  In contrast, underperforming organizations only analyze 10 different data sources, and moderate performers, 15. The following graphic provides an overview of the top ten most-used sources of data.

companies track a wide variety of data

  • High performers are 3.5x more likely than underperformers to extensively use mobile reporting tools to analyze data wherever they are. 55% of high performing enterprises are more likely to be extensively using mobile reporting tools to analyze data.  The following graphic compares mobile analytics adoption across high, medium and low performing enterprises.

top teams tap mobile analytics

  • Speed of deployment (68%), ease of use for business users (65%) and self-service and data discovery tools (61%) are the three top three priorities leaders place on selecting new analytics apps.  Mobile capabilities to explore and share data (56%) and cloud deployment (54%) are the fourth and fifth factors leaders mentioned.  The following graphic compares the decision factors that go into selecting an analytics app.

decision factor analytics app

  • Industries who have the greater analytics adoption today (over 50% of users active on apps and tools) include high tech (36%) and financial services (32%). Automotive (30%) and media & communications (30%) also have attained significant adoption.


  • High performing enterprises are 5.4x more likely than underperformers to primarily use analytics tools to gain strategic insights from Big Data. Leaders in high performance enterprises see the value of Big Data (76%) to a much greater extent than their lower performing counterparts (14%).   High performing enterprises are 3.1x more likely than underperformers to be confident in ability to manage data from internal systems, customers, and third parties.

Key Take-Aways From The 2015 Pacific Crest SaaS Survey

  • Cloud Computing M&A40% of SaaS companies are using Amazon Web Services (AWS) to deliver their apps today.
  • Median subscription gross margins for SaaS companies in 2015 are 78%.
  • Overall, SaaS companies are projecting median revenue growth of 46% in 2015.
  • Channel sales and inside sales strategies delivered the highest revenue growth rates in 2014.
  • Companies in the $5M – $7.5M range achieved 70% revenue growth in 2014, surpassing the median 36% growth rate last year.

These and many other insights are from the 2015 Pacific Crest SaaS Survey published by David Skok of Matrix Partners in collaboration with Pacific Crest Securities. You can download a free copy of Part I of the study here (PDF, opt-in, 72 pp). 305 SaaS companies were interviewed, 31% from international locations and 69% from North America.  David Skok and Pacific Crest Securities will publish Part 2 of the results in the near future. SaaS Metrics 2.0 – Detailed Definitions provides a useful reference for many of the SaaS metrics mentioned in the study.

This year’s survey attracted an eclectic base of respondents, with median revenues of $4M a year, with 133 companies reporting less than $5M, and 57 over $25M. Annual Contract Value (ACV) across all respondents is $21K, with 17% of respondents reporting ACVs over $100K.  Please see pages 3 & 4 of the study for a description of the methodology. Key take-aways from the study include the following:

  • SaaS GAAP revenue growth is accelerating in 2014 and is projected to increase further in 2015 from 44% to 46%. Median revenue growth in 2014 for all survey respondents was 44%, with the aggregate projected growth for 2015 reaching 46%. When SaaS companies with less than $2.5M in revenues are excluded, median GAAP growth was 35% in 2014 and is expected to reach that same level in 2015.

grow SaaS Revenue


  • SaaS companies with mixed customer strategies are growing at 57% a year.  Excluding respondent companies with less than $2.5M in revenues, a mixed customer strategy dominates all others. Concentrating on enterprises and small & medium businesses (SMBs) both drove 33% revenue growth of respondent companies this year.

median growth rate as a function of customer


  • 40% of SaaS companies are using Amazon Web Services (AWS) to deliver their apps today. AWS is projected to increase to 44% three years from now, with Microsoft Azure increasing from 3% today to 6% in 3 years.

SaaS Delivered


  • 41% of all SaaS companies surveyed rely primarily on field sales.  Factoring out the companies with less than $2.5M in revenue, field sales accounts for 32%.

primary mode of distribution


  • Field sales dominates as the most effective sales strategy when median deal sizes are $50K or more. In contrast, inside sales dominates $5K to $15K deal sizes, and the Internet dominates deal sizes less than $1K.  The following graphic provides insights into the primary mode of sales by median initial contract size.

mode by initial contract size


  • 16% of new Average Contract Value (ACV) sales is from upsells, with the largest companies being the most effective at this selling strategy. One of the strongest catalysts of a SaaS companies’ growth is the ability to upsell customers to a higher ACV, generating significantly greater gross margin in the process. SaaS companies with revenues between $40M to $75M increase their ACV by 32% using upsells. Larger SaaS companies with over $75M in sales generate 28% additional ACV with upsell strategies.

ACV Value


  • The highest growth SaaS companies are relying on upsells to fuel higher ACV.  There is a significant difference between the highest and lowest growth SaaS companies when it comes to upsell expertise and execution.  The following graphic provides an overview by 2014 GAAP revenue category of percent of ACV attributable to upsells.

fast upsell


  • 60% are driving revenues with “Try Before You Buy” strategies, with 30% generating the majority of their revenues using this approach.  On contrast, only 30% of companies generate revenues and ACV from freemium.


The Hottest Cloud-based Marketing Startups of 2015

  • What's Hot in CRM, 2012 Apttus, Booker, Lattice Engines, Segment and Tubular Labs are the five hottest cloud-based marketing startups of 2015.
  • 13 of the hottest 34 cloud-based marketing startups are from the Bay Area, followed by Los Angeles with 3, and Bangalore and New York, both with 2.
  • 14 are in Pre Series A, 7 in A-Stage, 5 in B-Stage and 3 in C-Stage funding rounds.

These and other insights are from a quick analysis completed today using Mattermark Pro, in response to reader requests for more research on marketing startups.

Mattermark uses a combination of artificial intelligence and data quality analysis to provide insights into over 1 million private companies, over 470,000 with employee data, and over 100,000 funding events. In the interest of full disclosure I’m not today and have never done any consulting work of any kind with Mattermark.

Finding The Hottest Cloud-based Marketing Startups

To find the hottest cloud-based marketing startups, an initial query requesting startups competing in the cloud computing and marketing industries was completed. Next, advanced query tools in Mattermark Pro were used to filter out all startups that had exited as indicated by their stage status in Mattermark’s data. This filtered out startups who had been acquired, completed an IPO or had exited through other means. The table below is the result of an analysis completed today with Mattermark data.  You can download the table here in Microsoft Excel format.

hottest cloud-based marketing startups

The Mattermark Growth Score shown in the table below and downloadable Excel file is a measure of how quickly a company is gaining traction at a given point in time. It incorporates the Mindshare Score (web traffic, social traction) as well as business growth metrics (e.g. employee count over time, funding). The underlying assumption is that companies who see growth across these signals are shipping product and talking to customers, and are more likely to continue to grow as a result. This score is not meant to provide guidance on which startup to invest in.  Rather it’s a measure of momentum across the metrics and KPIs that Mattermark measures.

Businesses Adopting Big Data, Cloud & Mobility Grow 53% Faster Than Peers

  • London sykline duskOrchestrating big data, cloud and mobility strategies leads to 53% greater growth than peers not adopting these technologies.
  • 73% of midmarket companies say the complexity of their stored data requires big data analytics apps and tools to better gain insights from.
  • 41% of midmarket companies are using big data to better target marketing efforts.
  •  54% of midmarket companies’ security budgets are invested in security plans versus reacting to threats.

These and many other insights are from Dell’s second annual Global Technology Adoption Index (GTAI 2015) released last week in collaboration with TNS Research. The Global Technology Adoption Index surveyed IT and business decision makers of mid-market organizations across 11 countries, interviewing 2,900 IT and business decision makers representing businesses with 100 to 4,999 employees.

The purpose of the index is to understand how business users perceive, plan for and utilize four key technologies: cloud, mobility, security and big data. Dell released the first wave of its results this week and will be publishing several additional chapters throughout 2016. You can download Chapter 1 of the study here (PDF, no opt-in, 18 pp.).

Key take-aways from the study include the following:

  • Orchestrating big data, cloud and mobility strategies leads to 53% greater growth than peers not adopting these technologies. Midmarket organizations adopting big data alone have the potential to grow 50% more than comparable organizations. Effective use of Bring Your Own Device (BYOD) mobility strategies has the potential to increase growth by 53% over laggards or late adopters..

orchestrating tech for greater growth

  • 73% of North American organizations believe the volume and complexity of their data requires big data analytics apps and tools.  This is up from 54% in 2014, indicating midmarket organizations are concentrating on how to get more value from the massive data stores many have accumulated.  This same group of organizations believe they are getting more value out of big data this year (69%) compared to last year (64%).  Top outcomes of using big data include better targeting of marketing efforts (41%), optimization of ad spending (37%), and optimization of social media marketing (37%).

top outcomes

  • 54% of an organization’s security budget is invested in security plans versus reacting to threats. Dell & TNS Research discovered that midmarket organizations both in North America and Western Europe are relying on security to enable new devices or drive competitive advantage.  In North America, taking a more strategic approach to security has increased from 25% in 2014 to 35% today.  In Western Europe, the percentage of companies taking a more strategic view of security has increased from 26% in 2014 to 30% this year.

security strategic

  • IT infrastructure costs to support big data initiatives (29%) and costs related to securing the data (28%) are the two greatest barriers to big data adoption. For cloud adoption, costs and security are the two biggest barriers in midmarket organizations as is shown in the graphic below.

security costs

  • Cloud use by midmarket companies in France increased 12% in the last twelve months, leading all nations in the survey.  Of the 11 countries surveyed, France had the greatest increase in cloud adoption within midmarket companies.  French businesses increased their adoption of cloud applications and platforms from 70% in 2014 to 82% in 2015.

Sources: Dell Study Reveals Companies Investing in Cloud, Mobility, Security and Big Data Are Growing More Than 50 Percent Faster Than Laggards. October 13, 2015


2015 Big Data Market Update

big data market udpate

  • 42.6% of all big data apps developed for manufacturing are being created by enterprises today.
  • 38.2% of all big data and advanced analytics apps in use today are in customer-facing departments including marketing, sales, and customer service.
  • 33.2% of all big data and advanced analytics developers are concentrating on the software & computing industry.
  • 19.2% of big data app developers say quality of data is the biggest problem they consistently face when building new apps.

These and other insights are from the recently published report Big Data and Advanced Analytics Survey 2015, Volume I by Evans Data Corporation. The survey is based on 444 in-depth interviews with developers who are currently working with analytics and databases and are both currently working on and planning big data and advanced analytics projects. The survey’s results provide a strategic view of the attitudes, adoption patterns and intentions of developers in relation to big data and analytics. You can more on the methodology of the report here.

Key take-aways from the report include the following:

  • Software & computing (18%), financial (11.6%), manufacturing (10.9%) and retail (9.8%) industries have the highest percentage of programmers creating big data and analytics applications today.  Additional industries where big data app development is active and growing include entertainment (7.7%), telecommunications (7.5%), utilities & energy (6.6%) and healthcare (4.6%). The following graphic provides an overview of the industries addressed.

industries addressed

  • Capturing more information than traditional database practices (22.60%), capturing and analyzing unstructured data (21.10%) and the potential for visualizing or analyzing data differently (20.70%) are the three top use cases driving app development today.  Evans Data found that capturing more information than traditional database practices allow increased 6% since last year, making it the top use case in 2015. The following graphic provides the distribution of responses by use cases from the developers surveyed.

top three use cases

  • Total size of the data being processed (40.8%), complex, unstructured nature of the data (38.1%) and the need for real-time data analysis (17.7%) are the top three factors driving big data adoption over traditional database solutions.  Evans Data found that the size and complexity of structured and unstructured data is the catalyst that gets enterprises moving on the journey to big data adoption. The ability to gain greater insights into their data with descriptive, predictive and contextually-driven analytics is the fuel that keeps big data adoption moving forward in all companies.

reasons to move to big data

  • 33.2% of all big data and advanced analytics developers are concentrating on the software & computing industry. Of these developers, 36.7% are working in organizations of 101 to 1,000 employees, 32.9% are in enterprises of 1,000+ employees, and 30.1% are in organizations of 100 employees or less. 42.6% of all big data software development in manufacturing begins in enterprises (1K+ employees).

Industries being targeted by big data by company size


  • Enterprises competing in the software & computing industry (17.5%), manufacturing (15.8%) and financial industry (14%) are investing the heaviest in big data and analytics app development. Overall, 32% of big data and analytics projects are custom-designed and produced by system integrators and value-added resellers (SI, VAR). 70% of big data and advanced analytics apps for manufacturing are created by enterprise and system integrator/value-added reseller (SI/VAR) development teams.  The following graphic provides an overview of industries targeted by big data, segmented by developer segment.

industries being targeted by big data by developer segment


  • Sales and customer data (9.6%), IT-based data analysis (9.4%), informatics (8.7%) and financial transactions (8.4%) are the most common big data sets app developers are working with today.  In addition marketing, system management, production and shop floor data, and web & social media-generated data are also included.  Evans Data found that informatics data sets grew the fastest in the last six months, and scientific computing is now competing with transaction processing systems as a dominant data set developers rely on to create new apps.

kinds of information that feed your company's data stores

  • Marketing departments have quickly become the most common users of big data and advanced analytics apps (14.4%) followed by IT (13.3%) and Research & Development (13%). Evans Data asked developers which departments in their organizations are putting big data and advanced analytics apps to use, regardless of where they were created.  38.2% of all big data use in organizations today are in customer-facing departments including marketing, sales, and customer service.

departments using analytics and big data

  • Availability of relevant tools (10.9%), storage costs (10.2%) and siloed business, IT, and analytics/data science teams (10.0%) are the top three barriers developers face in building new apps. It’s interesting to note that compliance and having to transition from legacy systems did not score higher in the survey, as these two areas are inordinately more complex in more regulated, older industries.  For big data and advanced analytics to accelerate across manufacturing and financial industries, compliance and legacy systems integration barriers will need to first be addressed.

three barriers

  • Quality of data (19.2%), relevance of data being acquired (13.5%), volume of data being processed (12.6%) and ability to adequately visualize big data (11.7%) are the four biggest problem areas faced by big data developers today.  Additional problem areas include the volume of data in storage (10.5%), ability to gain insight from big data (10.1%) and the high rate of data acquisition (7.6%).  The remainder of problem areas are shown in the graphic below.   

biggest problem

  • Providing real-time correlation and anomaly detection of diverse security data (29.9%) and high-speed querying of security intelligence data (28.1%) are the two most critical areas vendors can assist developers with today. Big data and analytics app developers are looking to vendors to also provide more effective security algorithms for various use case scenarios (17.6%), flexible big data analytics across structured and unstructured data (14.2%) and more useful graphical front-end tools for visualizing and exploring big data (5.1%).

vendor provide


10 Ways Analytics Are Accelerating Digital Manufacturing

  • 42% of manufacturers say big data and analytics as their highest priority in 2015.
  • 56% of power distribution providers rank big data and analytics within their top three priorities for 2015.
  • 61% of aviation companies consider big data and analytics their highest priority this year.

Bottom line: Digital manufacturing strategies are gaining ground as manufacturers adopt big data and analytics to improve operational effectiveness, time-to-market, new product development and increase product quality and reliability.

Analytics Are Fueling Digital Manufacturing Growth

Big data and analytics adoption by manufacturers is the first step many are taking to create a galvanized, intelligent digital thread that unifies every aspect of their value chains. For aerospace manufacturers whose supply chains are exceptionally complex, big data and analytics are revolutionizing value chains starting with suppliers and progressing through all operations.

The majority of manufacturers are relying on analytics to improve order accuracy, shipment & cycle time performance, and product quality. Those excelling at digital manufacturing strategies are gaining additional analytical insights into how they can make decisions more accurately, quicker and with lower potential costs and risks.

The manufacturing industry generates more data than any other sector of the global economy on a consistent basis.   The more complex a given manufacturers’ operations are, the more valuable the insights gained from big data and analytics. The following comparison of big data analytics priorities by industry from a recent speech given by Jeff Immelt, CEO and President of General Electric illustrates this point:

analytics customer survey

Source: GE Minds and Machines Presentation, Jeff Immelt, CEO & President, General Electric.

10 Ways Analytics Are Accelerating Digital Manufacturing 

The ten ways analytics is accelerating digital manufacturing adoption globally include the following:

  • Providing real-time operator intelligence (70%), remote monitoring and diagnostics (66%), and condition-based maintenance (59%) are the three most valuable areas for analytics GE customers mentioned in a recent survey. GE’s industrial customers are looking to tailor pre-built applications that can deliver the eight different functional areas shown in the graphic below.  Manufacturers are looking to asset performance management as an integral part of their digital thread’s analytics and insight.

industrial customer perspective

Source: GE Minds and Machines Presentation, Jeff Immelt, CEO & President, General Electric.

  • Using data modeling to improve production workflows is improving Earnings Before Interest & Taxes (EBIT) by 55% for a chemical manufacturer.  Using analytics and data modeling to make more accurate,  efficient decisions encompassing making or buying ingredients, choosing to substitute an ingredient or not, optimizing equipment usage and/or reliability and gaining incremental sales through increased production capacity is leading to a significant improvement in EBIT for a leading chemical manufacturer on a consistent basis.  The following graphic provides insights into the contributions of each factor in improving EBIT performance.

EBIT Growth

Source: Taming manufacturing complexity with advanced analytics. McKinsey & Company by Patrick Briest, Valerio Dilda, and Ken Somers February 2015. 

  • Planning-execution integration in production centers and real-time production integration are two areas where analytics are having the greatest impact on manufacturers’ operating expenses (OPEX). When analytics are integrated as part of a digital manufacturing strategy, supply chains benefit when Web-EDI (Electronic Data Interchange) and real-time order conformation are implemented and analyzed for continual improvement.

Digital initaitves impact

Source: Operational Excellence through Digital in Manufacturing Industries. Capgemini Consulting.

  • Optimization tools (56%), demand forecasting (53%), integrated business planning (48%) and supplier collaboration & risk analytics (46%) are being rapidly adopted by manufacturers today, setting the foundation for digital manufacturing growth.  Deloitte recently interviewed supply chain executives regarding the thirteen fastest-moving technical capacities they are using today and expect to use in the future. The following graphic provides an overview of supply chain capabilities current in use and what percent of each they expect to use in the future.

use of supply chain capabilities

Source: Supply Chain Talent of the Future Findings from the third annual supply chain survey. Deloitte.  2015.

  • Analytics is integral to making the vision of Industrie 4.0 a reality. Industrie 4.0 is a German government initiative that promotes automation of the manufacturing industry with the goal of developing Smart Factories. Analytics is extensively used in manufacturing centers who are in the process of reengineering their entire operations to attain Industrie 4.0 compliance. Manufacturing value chains in highly regulated industries that rely on German suppliers and manufacturers are also relying on analytics extensively to guide their Industrie 4.0 journey. A recent Deloitte study of Industrie 4.0 adoption found that research and development (43%) will see the greatest transformational contribution from Industry 4.0.

Industry 4.0 areas

Source: Industry 4.0: Challenges and solutions for the digital transformation and use of exponential technologies. Deloitte Consulting, 2015

  • Analytics is enabling manufacturers to also scale real time cloud-based operational intelligence, condition-based monitoring, monitoring & diagnostics and asset lifecycle management across global manufacturing centers.  Capturing, aggregating, analyzing and taking action on analytics across all production centers using the GE Predix Cloud will also accelerate digital manufacturing growth over time.  Integrating analytics, industrial and sensor data into a scalable series of data models and apps delivered as a Platform-as-a-Service (PaaS), GE will make this service commercially available in 2016.  The following graphic illustrates how complex manufacturers could use Predix Cloud to improve operational efficiency and quality.

horizontal capability controls

Source: Jeff Immelt Presentation on Pivot Strategy, December 16, 2014

  • Analytics is providing greater insights into product, process, program and service quality, forcing manufacturers to revamp existing production centers and make them more efficient.  Gaining greater insight into which production centers and factories are delivering the highest quality products and why is now possible.  The vision of unifying quality across an enterprise quality management and compliance (ECQM) framework is now a reality, driving greater digital manufacturing growth as a result. The following graphic from Tableau is an example of a manufacturing quality dashboard.

Mfg quality dashboard

Source: Manufacturing Analytics Quality Dashboard

  • Increasing production yields through the use of more effective supplier quality management and bill of material (BOM) planning integrated within production processes.  Analytics is extensively being used today for supplier audits, supplier quality management and traceability. Capitalizing on the full value of these analytics is a strong catalyst for manufacturers to move closer to digitizing their operations.
  • Using analytics to predict machine failures before they occur reduces downtime, production costs and increase customer satisfaction.  In highly regulated industries production equipment is periodically audited and reviewed for conformance to specific standards.  Integrating even the simplest sensor into production equipment can deliver valuable insights into what factors cause it to fail.  Analytics are providing Failure Mode and Effects Analysis (FMEA) in real-time today, providing manufacturers with a glimpse into which equipment and machinery will most likely fail when. Knowing this can save literally millions of dollars in lost production time.
  • Adopting Pareto Analysis to continually improve schedule, quality and cost performance to the cell or production center level is driving digital manufacturing adoption.  Determining which factors are enhancing or reducing product, process and program quality is now possible using advanced manufacturing analytics. Differentiating between the many symptoms of a quality problem and its root cause is now becoming possible, especially for companies pursuing digital manufacturing strategies.

Additional sources of information on the impact of analytics on digital manufacturing:


%d bloggers like this: