Skip to content

Posts from the ‘Business Intelligence’ Category

Roundup Of Analytics, Big Data & BI Forecasts And Market Estimates, 2016

  • World map technologyBig Data & business analytics software worldwide revenues will grow from nearly $122B in 2015 to more than $187B in 2019, an increase of more than 50% over the five-year forecast period.
  • The market for prescriptive analytics software is estimated to grow from approximately $415M in 2014 to $1.1B in 2019, attaining a 22% CAGR.
  • By 2020, predictive and prescriptive analytics will attract 40% of enterprises’ net new investment in business intelligence and analytics.

Making enterprises more customer-centric, sharpening focus on key initiatives that lead to entering new markets and creating new business models, and improving operational performance are three dominant factors driving analytics, Big Data, and business intelligence (BI) investments today. Unleashing the insights hidden in unstructured data is providing enterprises with the potential to compete and improve in areas they had limited visibility into before. Examples of these areas include the complexity of B2B selling and service relationships,  healthcare services, and maintenance, repair, and overhaul (MRO) of complex machinery. All organizations face the daunting task of integrating systems together to enable greater process visibility. enosiX is taking a leadership role in this area, offering real-time integration between SAP and Salesforce systems, giving enterprises the opportunity to be more responsive to suppliers, resellers, partners and most importantly, customers.

Presented below are a roundup of recent analytics and big data forecasts and market estimates:

  • The global big data market will grow from $18.3B in 2014 to $92.2B by 2026, representing a compound annual growth rate of 14.4 percent. Wikibon predicts significant growth in all four sub-segments of big data software through 2026. Data management (14% CAGR), core technologies such as Hadoop, Spark and streaming analytics (24% CAGR), databases (18% CAGR) and big data applications, analytics and tools (23% CAGR) are the four fastest growing sub-segments according to Wikibon. Source: Wikibon forecasts Big Data market to hit $92.2B by 2026.

Wikibon big data forecast 2016

analytics market shares

IDC FutureScape

  • The Total Data market is expected to nearly double in size, growing from $69.6B in revenue in 2015 to $132.3B in 2020. The specific market segments included in 451 Research’s analysis are operational databases, analytic databases, reporting and analytics, data management, performance management, event/stream processing, distributed data grid/cache, Hadoop, and search-based data platforms and analytics. Source: Total Data market expected to reach $132bn by 2020; 451 Research, June 14, 2016.

Worldwide total revenue by segment

overall adoption of big data

  • Improving customer relationships (55%) and making the business more data-focused (53%) are the top two business goals or objectives driving investments in data-driven initiatives today. 78% of enterprises agree that collection and analysis of Big Data have the potential to change fundamentally the way they do business over the next 1 to 3 years. Source: IDG Enterprise 2016 Data & Analytics Research, July 5, 2016.

Data Helps Customer Focused Organizations

  • Venture capital (VC) investment in Big Data accelerated quickly at the beginning of the year with DataDog ($94M), BloomReach ($56M), Qubole ($30M), PlaceIQ ($25M) and others receiving funding. Big Data startups received $6.64B in venture capital investment in 2015, 11% of total tech VC.  M&A activity has remained moderate (FirstMark noted 35 acquisitions since their latest landscape was published last year). Source: Matt Turck’s blog post, Is Big Data Still a Thing? (The 2016 Big Data Landscape).

big data landscape

  • IDC forecasts global spending on cognitive systems will reach nearly $31.3 billion in 2019 with a five-year compound annual growth rate (CAGR) of 55%. More than 40% of all cognitive systems spending throughout the forecast will go to software, which includes both cognitive applications (i.e., text and rich media analytics, tagging, searching, machine learning, categorization, clustering, hypothesis generation, question answering, visualization, filtering, alerting, and navigation). Also included in the forecasts are cognitive software platforms, which enable the development of intelligent, advisory, and cognitively enabled solutions.  Source:  Worldwide Spending on Cognitive Systems Forecast to Soar to More Than $31 Billion in 2019, According to a New IDC Spending Guide.
  • Big Data Analytics & Hadoop Market accounted for $8.48B in 2015 and is expected to reach $99.31B by 2022 growing at a CAGR of 42.1% from 2015 to 2022. The rise of big data analytics and rapid growth in consumer data capture and taxonomy techniques are a few of the many factors fueling market growth. Source: Stratistics Market Research Consulting (PDF, opt-in, payment reqd).

Additional sources of market information: 

Analytics Trends 2016 The Next Evolution, Deloitte.

Big data analytics, Ericsson White Paper Uen 288 23-3211 Rev B | October 2015

Big Data and the Intelligence Economy in Canada Big Data: Big Opportunities to Create Business Value, EMC.

The Forrester Wave™: Big Data Hadoop Distributions, Q1 2016

The Forrester Wave™: Big Data Hadoop Cloud Solutions, Q2 2016

The Forrester Wave™: Big Data Text Analytics Platforms, Q2 2016

The Forrester Wave™: Big Data Streaming Analytics, Q1 2016

The Forrester Wave™: Customer Analytics Solutions, Q1 2016

From Big Data to Better Decisions: The ultimate guide to business intelligence today (Domo)

Gartner Hype Cycle for Business Intelligence and Analytics, 2015

IBM: Extracting business value from the 4 V’s of big data

IDC Worldwide Big Data Technology and Services 2012 – 2015 Forecast

Opportunities in Telecom Sector: Arising from Big Data. Deloitte, November 2015

Who will win as Finance doubles down on analytics?

Advertisements

10 Ways Machine Learning Is Revolutionizing Manufacturing

machine learningBottom line: Every manufacturer has the potential to integrate machine learning into their operations and become more competitive by gaining predictive insights into production.

Machine learning’s core technologies align well with the complex problems manufacturers face daily. From striving to keep supply chains operating efficiently to producing customized, built- to-order products on time, machine learning algorithms have the potential to bring greater predictive accuracy to every phase of production. Many of the algorithms being developed are iterative, designed to learn continually and seek optimized outcomes. These algorithms iterate in milliseconds, enabling manufacturers to seek optimized outcomes in minutes versus months.

The ten ways machine learning is revolutionizing manufacturing include the following:

  • Increasing production capacity up to 20% while lowering material consumption rates by 4%. Smart manufacturing systems designed to capitalize on predictive data analytics and machine learning have the potential to improve yield rates at the machine, production cell, and plant levels. The following graphic from General Electric and cited in a National Institute of Standards (NIST) provides a summary of benefits that are being gained using predictive analytics and machine learning in manufacturing today.

typical production improvemensSource: Focus Group: Big Data Analytics for Smart Manufacturing Systems

  • Providing more relevant data so finance, operations, and supply chain teams can better manage factory and demand-side constraints. In many manufacturing companies, IT systems aren’t integrated, which makes it difficult for cross-functional teams to accomplish shared goals. Machine learning has the potential to bring an entirely new level of insight and intelligence into these teams, making their goals of optimizing production workflows, inventory, Work In Process (WIP), and value chain decisions possible.

factory and demand analytics

Source:  GE Global Research Stifel 2015 Industrials Conference

  • Improving preventative maintenance and Maintenance, Repair and Overhaul (MRO) performance with greater predictive accuracy to the component and part-level. Integrating machine learning databases, apps, and algorithms into cloud platforms are becoming pervasive, as evidenced by announcements from Amazon, Google, and Microsoft. The following graphic illustrates how machine learning is integrated into the Azure platform. Microsoft is enabling Krones to attain their Industrie 4.0 objectives by automating aspects of their manufacturing operations on Microsoft Azure.

Azure IOT Services

Source: Enabling Manufacturing Transformation in a Connected World John Shewchuk Technical Fellow DX, Microsoft

  • Enabling condition monitoring processes that provide manufacturers with the scale to manage Overall Equipment Effectiveness (OEE) at the plant level increasing OEE performance from 65% to 85%. An automotive OEM partnered with Tata Consultancy Services to improve their production processes that had seen Overall Equipment Effectiveness (OEE) of the press line reach a low of 65 percent, with the breakdown time ranging from 17-20 percent.  By integrating sensor data on 15 operating parameters (such as oil pressure, oil temperature, oil viscosity, oil leakage, and air pressure) collected from the equipment every 15 seconds for 12 months. The components of the solution are shown

OEE Graphic

Source: Using Big Data for Machine Learning Analytics in Manufacturing

  • Machine learning is revolutionizing relationship intelligence and Salesforce is quickly emerging as the leader. The series of acquisitions Salesforce is making positions them to be the global leader in machine learning and artificial intelligence (AI). The following table from the Cowen and Company research note, Salesforce: Initiating At Outperform; Growth Engine Is Well Greased published June 23, 2016, summarizes Salesforce’s series of machine learning and AI acquisitions, followed by an analysis of new product releases and estimated revenue contributions. Salesforce’s recent acquisition of e-commerce provider Demandware for $2.8B is analyzed by Alex Konrad is his recent post,     Salesforce Will Acquire Demandware For $2.8 Billion In Move Into Digital Commerce. Cowen & Company predicts Commerce Cloud will contribute $325M in revenue by FY18, with Demandware sales being a significant contributor.

Salesforce AI Acquisitions

Salesforce revenue sources

  • Revolutionizing product and service quality with machine learning algorithms that determine which factors most and least impact quality company-wide. Manufacturers often are challenged with making product and service quality to the workflow level a core part of their companies. Often quality is isolated. Machine learning is revolutionizing product and service quality by determining which internal processes, workflows, and factors contribute most and least to quality objectives being met. Using machine learning manufacturers will be able to attain much greater manufacturing intelligence by predicting how their quality and sourcing decisions contribute to greater Six Sigma performance within the Define, Measure, Analyze, Improve, and Control (DMAIC) framework.
  • Increasing production yields by the optimizing of team, machine, supplier and customer requirements are already happening with machine learning. Machine learning is making a difference on the shop floor daily in aerospace & defense, discrete, industrial and high-tech manufacturers today. Manufacturers are turning to more complex, customized products to use more of their production capacity, and machine learning help to optimize the best possible selection of machines, trained staffs, and suppliers.
  • The vision of Manufacturing-as-a-Service will become a reality thanks to machine learning enabling subscription models for production services. Manufacturers whose production processes are designed to support rapid, highly customized production runs are well positioning to launch new businesses that provide a subscription rate for services and scale globally. Consumer Packaged Goods (CPG), electronics providers and retailers whose manufacturing costs have skyrocketed will have the potential to subscribe to a manufacturing service and invest more in branding, marketing, and selling.
  • Machine learning is ideally suited for optimizing supply chains and creating greater economies of scale.  For many complex manufacturers, over 70% of their products are sourced from suppliers that are making trade-offs of which buyer they will fulfill orders for first. Using machine learning, buyers and suppliers could collaborate more effectively and reduce stock-outs, improve forecast accuracy and met or beat more customer delivery dates.
  • Knowing the right price to charge a given customer at the right time to get the most margin and closed sale will be commonplace with machine learning.   Machine learning is extending what enterprise-level price optimization apps provide today.  One of the most significant differences is going to be just how optimizing pricing along with suggested strategies to close deals accelerate sales cycles.

Additional reading:

Cisco Blog: Deus Ex Machina: Machine Learning Acts to Create New Business Outcomes

Enabling Manufacturing Transformation in a Connected World John Shewchuk Technical Fellow DX, Microsoft 

Focus Group: Big Data Analytics for Smart Manufacturing Systems

GE Predix: The Industrial Internet Platform

IDC Manufacturing Insights reprint courtesy of Cisco: Designing and Implementing the Factory of the Future at Mahindra Vehicle Manufacturers

Machine Learning: What It Is And Why It Matters

McKinsey & Company, An Executive’s Guide to Machine Learning

MIT Sloan Management Review, Sales Gets a Machine-Learning Makeover

Stanford University CS 229 Machine Learning Course Materials
The Economist Feature On Machine Learning

UC Berkeley CS 194-10, Fall 2011: Introduction to Machine Learning
Lecture slides, notes

University of Washington CSE 446 – Machine Learning – Winter 2014

Sources:

Lee, J. H., & Ha, S. H. (2009). Recognizing yield patterns through hybrid applications of machine learning techniques. Information Sciences, 179(6), 844-850.

Mackenzie, A. (2015). The production of prediction: What does machine learning want?. European Journal of Cultural Studies, 18(4-5), 429-445.

Pham, D. T., & Afify, A. A. (2005, July). Applications of machine learning in manufacturing. In Intelligent Production Machines and Systems, 1st I* PROMS Virtual International Conference (pp. 225-230).

Priore, P., de la Fuente, D., Puente, J., & Parreño, J. (2006). A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems. Engineering Applications of Artificial Intelligence, 19(3), 247-255.

Businesses Adopting Big Data, Cloud & Mobility Grow 53% Faster Than Peers

  • London sykline duskOrchestrating big data, cloud and mobility strategies leads to 53% greater growth than peers not adopting these technologies.
  • 73% of midmarket companies say the complexity of their stored data requires big data analytics apps and tools to better gain insights from.
  • 41% of midmarket companies are using big data to better target marketing efforts.
  •  54% of midmarket companies’ security budgets are invested in security plans versus reacting to threats.

These and many other insights are from Dell’s second annual Global Technology Adoption Index (GTAI 2015) released last week in collaboration with TNS Research. The Global Technology Adoption Index surveyed IT and business decision makers of mid-market organizations across 11 countries, interviewing 2,900 IT and business decision makers representing businesses with 100 to 4,999 employees.

The purpose of the index is to understand how business users perceive, plan for and utilize four key technologies: cloud, mobility, security and big data. Dell released the first wave of its results this week and will be publishing several additional chapters throughout 2016. You can download Chapter 1 of the study here (PDF, no opt-in, 18 pp.).

Key take-aways from the study include the following:

  • Orchestrating big data, cloud and mobility strategies leads to 53% greater growth than peers not adopting these technologies. Midmarket organizations adopting big data alone have the potential to grow 50% more than comparable organizations. Effective use of Bring Your Own Device (BYOD) mobility strategies has the potential to increase growth by 53% over laggards or late adopters..

orchestrating tech for greater growth

  • 73% of North American organizations believe the volume and complexity of their data requires big data analytics apps and tools.  This is up from 54% in 2014, indicating midmarket organizations are concentrating on how to get more value from the massive data stores many have accumulated.  This same group of organizations believe they are getting more value out of big data this year (69%) compared to last year (64%).  Top outcomes of using big data include better targeting of marketing efforts (41%), optimization of ad spending (37%), and optimization of social media marketing (37%).

top outcomes

  • 54% of an organization’s security budget is invested in security plans versus reacting to threats. Dell & TNS Research discovered that midmarket organizations both in North America and Western Europe are relying on security to enable new devices or drive competitive advantage.  In North America, taking a more strategic approach to security has increased from 25% in 2014 to 35% today.  In Western Europe, the percentage of companies taking a more strategic view of security has increased from 26% in 2014 to 30% this year.

security strategic

  • IT infrastructure costs to support big data initiatives (29%) and costs related to securing the data (28%) are the two greatest barriers to big data adoption. For cloud adoption, costs and security are the two biggest barriers in midmarket organizations as is shown in the graphic below.

security costs

  • Cloud use by midmarket companies in France increased 12% in the last twelve months, leading all nations in the survey.  Of the 11 countries surveyed, France had the greatest increase in cloud adoption within midmarket companies.  French businesses increased their adoption of cloud applications and platforms from 70% in 2014 to 82% in 2015.

Sources: Dell Study Reveals Companies Investing in Cloud, Mobility, Security and Big Data Are Growing More Than 50 Percent Faster Than Laggards. October 13, 2015

 

2015 Roundup Of Analytics, Big Data & Business Intelligence Forecasts And Market Estimates

  • NYC SkylineSalesforce (NYSE:CRM) estimates adding analytics and Business Intelligence (BI) applications will increase their Total Addressable Market (TAM) by $13B in FY2014.
  • 89% of business leaders believe Big Data will revolutionize business operations in the same way the Internet did.
  • 83% have pursued Big Data projects in order to seize a competitive edge.

Despite the varying methodologies used in the studies mentioned in this roundup, many share a common set of conclusions. The high priority in gaining greater insights into customers and their unmet needs, more precise information on how to best manage and simplify sales cycles, and how to streamline service are common themes.

The most successful Big Data uses cases revolve around enterprises’ need to get beyond the constraints that hold them back from being more attentive and responsive to customers.

Presented below is a roundup of recent forecasts and estimates:

  • Wikibon projects the Big Data market will top $84B in 2026, attaining a 17% Compound Annual Growth Rate (CAGR) for the forecast period 2011 to 2026. The Big Data market reached $27.36B in 2014, up from $19.6B in 2013. These and other insights are from Wikibon’s excellent research of Big Data market adoption and growth. The graphic below provides an overview of their Big Data Market Forecast.  Source: Executive Summary: Big Data Vendor Revenue and Market Forecast, 2011-2026.

Wikibon big data forecast

  • IBM and SAS are the leaders of the Big Data predictive analytics market according to the latest Forrester Wave™: Big Data Predictive Analytics Solutions, Q2 2015. The latest Forrester Wave is based on an analysis of 13 different big data predictive analytics providers including Alpine Data Labs, Alteryx, Angoss Software, Dell, FICO, IBM, KNIME.com, Microsoft, Oracle, Predixion Software, RapidMiner, SAP, and SAS. Forrester specifically called out Microsoft Azure Learning is an impressive new entrant that shows the potential for Microsoft to be a significant player in this market. Gregory Piatetsky (@KDNuggets) has done an excellent analysis of the Forrester Wave Big Data Predictive Analytics Solutions Q2 2015 report here. Source: Courtesy of Predixion Software: The Forrester Wave™: Big Data Predictive Analytics Solutions, Q2 2015 (free, no opt-in).

Forrester Wave Big Data Predictive Analytics

  • IBM, KNIME, RapidMiner and SAS are leading the advanced analytics platform market according to Gartner’s latest Magic Quadrant. Gartner’s latest Magic Quadrant for advanced analytics evaluated 16 leading providers of advanced analytics platforms that are used to building solutions from scratch. The following vendors were included in Gartner’s analysis: Alpine Data Labs, Alteryx, Angoss, Dell, FICO, IBM, KNIME, Microsoft, Predixion, Prognoz, RapidMiner, Revolution Analytics, Salford Systems, SAP, SAS and Tibco Software, Gregory Piatetsky (@KDNuggets) provides excellent insights into shifts in Magic Quadrant for Advanced Platform rankings here.  Source: Courtesy of RapidMinerMagic Quadrant for Advanced Analytics Platforms Published: 19 February 2015 Analyst(s): Gareth Herschel, Alexander Linden, Lisa Kart (reprint; free, no opt-in).

Magic Quadrant for Advanced Analytics Platforms

  • Salesforce estimates adding analytics and Business Intelligence (BI) applications will increase their Total Addressable Market (TAM) by $13B in FY2014. Adding new apps in analytics is projected to increase their TAM to $82B for calendar year (CY) 2018, fueling an 11% CAGR in their total addressable market from CY 2013 to 2018. Source: Building on Fifteen Years of Customer Success Salesforce Analyst Day 2014 Presentation (free, no opt in).

Salesforce Graphic

  • 89% of business leaders believe big data will revolutionize business operations in the same way the Internet did. 85% believe that big data will dramatically change the way they do business. 79% agree that ‘companies that do not embrace Big Data will lose their competitive position and may even face extinction.’ 83% have pursued big data projects in order to seize a competitive edge. The top three areas where big data will make an impact in their operations include: impacting customer relationships (37%); redefining product development (26%); and changing the way operations is organized (15%).The following graphic compares the top six areas where big data is projected to have the greatest impact in organizations over the next five years. Source: Accenture, Big Success with Big Data: Executive Summary (free, no opt in).

Big Data Big Success Graphic

Frost & Sullivan Graphic

 

global text market graphic

 

  • Customer analytics (48%), operational analytics (21%), and fraud & compliance (21%) are the top three use cases for Big Data. Datameer’s analysis of the market also found that the global Hadoop market will grow from $1.5B in 2012 to $50.2B in 2020, and financial services, technology and telecommunications are the leading industries using big data solutions today. Source: Big Data: A Competitive Weapon for the Enterprise.

Big Data Use Cases in Business

  • 37% of Asia Pacific manufacturers are using Big Data and analytics technologies to improve production quality management. IDC found manufacturers in this region are relying on these technologies to reduce costs, increase productivity, and attract new customers. Source: Big Data and Analytics Core to Nex-Gen Manufacturing.

big data in manufacturing

  • Supply chain visibility (56%), geo-location and mapping data (47%) and product traceability data (42%) are the top three potential areas of Big Data opportunity for supply chain management. Transport management, supply chain planning, & network modeling and optimization are the three most popular applications of Big Data in supply chain initiatives. Source: Supply Chain Report, February 2015.

Big data use in supply chains

  • Finding correlations across multiple disparate data sources (48%), predicting customer behavior (46%) and predicting product or services sales (40%) are the three factors driving interest in Big Data analytics. These and other fascinating findings from InformationWeek’s 2015 Analytics & BI Survey provide a glimpse into how enterprises are selecting analytics applications and platforms. Source: Information Week 2015 Analytics & BI Survey.

factors driving interest in big data analysis

Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

%d bloggers like this: