Skip to content
Advertisements

Posts from the ‘IoT Healthcare’ Category

The State Of IoT Intelligence, 2018

  • Sales, Marketing and Operations are most active early adopters of IoT today.
  • Early adopters most often initiate pilots to drive revenue and gain operational efficiencies faster than anticipated.
  • 32% of enterprises are investing in IoT, and 48% are planning to in 2019.
  • IoT early adopters lead their industries in advanced and predictive analytics adoption.

These and many other fascinating insights are from Dresner Advisory Services’ latest report,  2018 IoT Intelligence® Market Study, in its 4th year of publication. The study concentrates on end-user interest in and demand for business intelligence in IoT. The study also examines key related technologies such as location intelligence, end-user data preparation, cloud computing, advanced and predictive analytics, and big data analytics. “While the market is still in an early stage, we believe that IoT Intelligence, the means to understand and leverage IoT data, will continue to expand as organizations mature in their collection and leverage of sensor level data,” said Howard Dresner, founder, and chief research officer at Dresner Advisory Services. 70% of respondents work at North American organizations (including the United States, Canada, and Puerto Rico). EMEA accounts for about 20%, and the remainder is distributed across Asia-Pacific and Latin America. Please see pages 11, 15 through 18 of the study for specifics regarding the methodology and respondent demographics.

Key insights gained from the study include the following:

  • Sales, Marketing and Operations are most active early adopters of IoT today. Looking to capitalize on IoT’s potential to gain real-time customer feedback on products’ and services’ performance, Sales and Marketing lead all departments in their prioritizing IoT’s value in the enterprises. 12% of Operations leaders say that IoT is critical to attaining their goals. Executive Management and Finance have yet to see the value that Sales, Marketing and Operations do.

  • Manufacturers see IoT as the most critical to achieving their product quality, production scheduling and supply chain orchestration goals. Insurance industry leaders also view IoT as critical to operations as their business models are now concentrating on automating inventory and safety management. Insurance firms also track vehicles in shipping and logistics fleets to gain greater visibility into how route operations can be optimized at the lowest possible risk of accidents. Financial Services and Healthcare are the next most interested in IoT with Higher Education and Business Services assign the lowest levels of importance by industry.

  • Investment in IoT analytics, application development and defining accurate, reliable metrics to guide development is the most critical aspect of IoT adoption today. Investments in the data supply chain including data capture, movement, data prep, and management is the second-most critical area followed by investments in IoT infrastructure.  Analytics, application development, and accurate, reliable metrics guiding DevOps are consistent with the study’s finding that early adopters have an excellent track record adopting and applying advanced and predictive analytics to challenging logistical, operations, sales, and marketing problems.

  • IoT early adopters or advocates prioritize dashboards, reporting, IoT use cases that provide data streams integral to analytics, advanced visualization, and data mining. IoT early adopters and the broader respondent base differ most in the prioritization of IT analytics, location intelligence, integration with operational processes, in-memory analysis, open source software, and edge computing. The data reflects how IoT early adopters quickly become more conversant in emerging technologies with the goal of achieving exponential scale across analytics and IoT platforms.

  • The criticality of advanced and predictive analytics to all leaders surveyed is at an all-time high. Attaining a (weighted-mean) importance score of 3.6 on a 5.0 scale, advanced and predictive analytics is today considered “critical” or “very important” to a majority of respondents. Despite a mild decline in 2017, importance sentiment (the perceived criticality of advanced and predictive analytics) is on an uptrend across the five years of our study. Mastery of advanced and predictive analytics is a leading indicator of IoT adoption, indicating the potential for more analytics pilots and in-production IoT projects next year.

  • The most valuable features for advanced and predictive analytics apps include support for a range of regression models, hierarchical clustering, descriptive statistics, and recommendation engine support. Model management is important to more than 90% of respondents, further indicating IoT analytics scale is a goal many are pursuing. Geospatial analysis (highly associated with mapping, populations, demographics, and other web-generated data), Bayesian methods, and automatic feature selection is the next most required series of features.

  • Access to advanced analytics for predictive and temporal analysis is the most important usability benefit to IoT adopters today. Second is support for easy iteration, and third is a simple process for continuous modification of models. The study evaluated a detailed set of nine usability benefits that support advanced and predictive activities and processes. All nine benefits are important to respondents, with the last one of a specialist not being required important to a majority of them at 70%.

Advertisements

How To Protect Healthcare IoT Devices In A Zero Trust World

  • Over 100M healthcare IoT devices are installed worldwide today, growing to 161M by 2020, attaining a Compound Annual Growth Rate (CAGR) of 17.2% in just three years according to Statista.
  • Healthcare executives say privacy concerns (59%), legacy system integration (55%) and security concerns (54%) are the top three barriers holding back Internet of Things (IoT) adoption in healthcare organizations today according to the Accenture 2017 Internet of Health Things Survey.
  • The global IoT market is projected to soar from $249B in 2018 to $457B in 2020, attaining a Compound Annual Growth Rate (CAGR) of 22.4% in just three years according to Statista.

Healthcare and medical device manufacturers are in a race to see who can create the smartest and most-connected IoT devices first. Capitalizing on the rich real-time data monitoring streams these devices can provide, many see the opportunity to break free of product sales and move into more lucrative digital service business models. According to Capgemini’s “Digital Engineering, The new growth engine for discrete manufacturers,” the global market for smart, connected products is projected to be worth $519B to $685B by 2020. The study can be downloaded here (PDF, 40 pp., no opt-in). 47% of a typical manufacturer’s product portfolio by 2020 will be comprised of smart, connected products. In the gold rush to new digital services, data security needs to be a primary design goal that protects the patients these machines are designed to serve. The following graphic from the study shows how organizations producing smart, connected products are making use of the data generated today.

Healthcare IoT Device Data Doesn’t Belong For Sale On The Dark Web

Every healthcare IoT device from insulin pumps and diagnostic equipment to Remote Patient Monitoring is a potential attack surface for cyber adversaries to exploit. And the healthcare industry is renowned for having the majority of system breaches initiated by insiders. 58% of healthcare systems breach attempts involve inside actors, which makes this the leading industry for insider threats today according to Verizon’s 2018 Protected Health Information Data Breach Report (PHIDBR).

Many employees working for medical providers are paid modest salaries and often have to regularly work hours of overtime to make ends meet. Stealing and selling medical records is one of the ways those facing financial challenges look to make side money quickly and discreetly. And with a market on the Dark Web willing to pay up to $1,000 or more for the most detailed healthcare data, according to Experian, medical employees have an always-on, 24/7 marketplace to sell stolen data. 18% of healthcare employees are willing to sell confidential data to unauthorized parties for as little as $500 to $1,000, and 24% of employees know of someone who has sold privileged credentials to outsiders, according to a recent Accenture survey. Healthcare IoT devices are a potential treasure trove to inside and outside actors who are after financial gains by hacking the IoT connections to smart, connected devices and the networks they are installed on to exfiltrate valuable medical data.

Healthcare and medical device manufacturers need to start taking action now to secure these devices during the research and development, design and engineering phases of their next generation of IoT products. Specifying and validating that every IoT access point is compatible and can scale to support Zero Trust Security (ZTS) is essential if the network of devices being designed and sold will be secure. ZTS is proving to be very effective at thwarting potential breach attempts across every threat surface an organization has. Its four core pillars include verifying the identity of every user, validating every device, limiting access and privilege, and utilizing machine learning to analyze user behavior and gain greater insights from analytics.

The First Step Is Protect Development Environments With Zero Trust Privilege

Product research & development, design, and engineering systems are all attack surfaces that cyber adversaries are looking to exploit as part of the modern threatscape. Their goals include gaining access to valuable Intellectual Property (IP), patents and designs that can be sold to competitors and on the Dark Web, or damaging and destroying development data to slow down the development of new products. Another tactic lies in planting malware in the firmware of IoT devices to exfiltrate data at scale.

Attack surfaces and the identities that comprise the new security perimeter of their companies aren’t just people; they are workloads, services, machines, and development systems and platforms. Protecting every attack surface with cloud-ready Zero Trust Privilege (ZTP) which secures access to infrastructure, DevOps, cloud, containers, Big Data, and the entire development and production environment is needed.

Zero Trust Privilege can harden healthcare and medical device manufacturers’ internal security, only granting least privilege access based on verifying who is requesting access, the context of the request, and the risk of the access environment. By implementing least privilege access, healthcare and medical device manufacturers would be able to minimize attack surfaces, improve audit and compliance visibility, and reduces risk, complexity, and costs across their development and production operations.

The Best Security Test Of All: An FDA Audit

Regulatory agencies across Asia, Europe, and North America are placing a higher priority than ever before on cybersecurity to the device level. The U.S. Food & Drug Administration’s Cybersecurity Initiative is one of the most comprehensive, providing prescriptive guidance to manufacturers on how to attain higher levels of cybersecurity in their products.

During a recent healthcare device and medical device manufacturer’s conference, a former FDA auditor (and now Vice President of Compliance) gave a fascinating keynote on the FDA’s intent to audit medical device security at the production level. Security had been an afterthought or at best a “trust but verify” approach that relied on trusted versus untrusted machine domains. That will no longer be the case, as the FDA will now complete audits that are comparable to Zero Trust across manufacturing operations and devices.

As Zero Trust Privilege enables greater auditability than has been possible in the past, combined with a “never trust, always verify” approach to system access, healthcare device, and medical products manufacturers should start engineering in Zero Trust into their development cycles now.

%d bloggers like this: