Skip to content

Posts from the ‘Artificial Intelligence’ Category

How To Improve Channel Sales With AI-Based Knowledge Sharing Networks

How To Improve Channel Sales With AI-Based Knowledge Sharing Networks

Bottom Line: Knowledge-sharing networks have been improving supply chain collaboration for decades; it’s time to enhance them with AI and extend them to resellers to revolutionize channel selling with more insights.

The greater the accuracy and speed of supply chain-based data integration and knowledge, the greater the accuracy of custom product orders. Add to that the complexity of selling CPQ and product configurations through channels, and the value of using AI to improve knowledge sharing networks becomes a compelling business case.

Why Channels Need AI-Based Knowledge Sharing Networks Now

Automotive, consumer electronics, high tech, and industrial products manufacturers are combining IoT sensors, microcontrollers, and modular designs to sell channel-configurable smart vehicles and products. AI-based knowledge-sharing networks are crucial to the success of their next-generation products. Likewise, to sell to any of these manufacturers, suppliers need to be pursuing the same strategy. AI-based services, including Amazon Alexa, Microsoft Cortana, and Google Voice and others, rely on knowledge-sharing networks to collaborate with automotive supply chains and strengthen OEM partnerships. The following graphic reflects how successful Amazon’s Alexa Automotive OEM sales team is at using knowledge-sharing networks to gain design wins across their industry.

The following are a few of the many reasons why creating and continually fine-tuning an AI-based knowledge-sharing network is an evolving strategy worth paying attention to:

  • Supply chains are the primary source of knowledge that must permeate an organization’s structure and channels for the company to stay synchronized to broader market demands. For CPQ channel selling strategies to thrive, they need real-time pricing, availability, available-to-promise, and capable-to-promise data to create accurate, competitive quotes that win deals. The better the supplier collaboration across supply chains and with channel partners, the higher the probability of selling more. A landmark study of the Toyota Production System by Professors Jeffrey H Dyer & Kentaro Nobeoka found that Toyota suppliers value shared data more than cash, making knowledge sharing systems invaluable to them (Dyer, Nobeoka, 2000).
  • Smart manufacturing metrics also need to be contributing real-time data to knowledge sharing systems channel partners use, relying on AI to create quotes for products that can be built the fastest and are the most attractive to each customer. Combining manufacturing’s real-time monitoring data stream of ongoing order progress and production availability with supply chain pricing, availability, and quality data all integrated to a cloud-based CPQ platform gives channel partners what they need to close deals now. AI-based knowledge-sharing networks will link supply chains, manufacturing plants, and channel partners to create smart factories that drive more sales. According to a recent Capgemini study, manufacturers are planning to launch 40% more smart factories in the next five years, increasing their annual investments by 1.7 times compared to the previous three years, according to their recent Smart factories @ scale Capgemini survey. The following graphic illustrates the percentage growth of smart factories across key geographic regions, a key prerequisite for enabling AI-based knowledge-sharing networks with real-time production data:
  • By closing the data gaps between suppliers, manufacturing, and channels, AI-based knowledge-sharing networks give resellers the information they need to sell with greater insight. Amazon’s Alexa OEM marketing teams succeeded in getting the majority of design-in wins with automotive manufacturers designing their next-generation of vehicles with advanced electronics and AI features. The following graphic from Dr. Dyer’s and Nobeoka’s study defines the foundations of a knowledge-sharing network. Applying AI to a mature knowledge-sharing network creates a strong network effect where every new member of the network adds greater value.
  • Setting the foundation for an effective knowledge sharing network needs to start with platforms that have AI and machine learning designed in with structure that can flex for unique channel needs. There are several platforms capable of supporting AI-based knowledge-sharing networks available, each with its strengths and approach to adapting to supply chain, manufacturing, and channel needs. One of the more interesting frameworks not only uses AI and machine learning across its technology pillars but also takes into consideration that a company’s operating model needs to adjust to leverage a connected economy to adapt to changing customer needs. BMC’s Autonomous Digital Enterprise (ADE) is differentiated from many others in how it is designed to capitalize on AI and Machine Learning’s core strengths to create innovation ecosystems in a knowledge-sharing network. Knowledge-sharing networks thrive on continuous learning. It’s good to see major providers using adaptive and machine learning to strengthen their platforms, with BMC’s Automated Mainframe Intelligence (AMI) emerging as a leader. Their approach to using adaptive learning to maintain data quality during system state changes and link exceptions with machine learning to deliver root cause analysis is prescient of where continuous learning needs to go.  The following graphic explains the ADE’s structure.

Conclusion

Knowledge-sharing networks have proven very effective in improving supply chain collaboration, supplier quality, and removing barriers to better inventory management. The next step that’s needed is to extend knowledge-sharing networks to resellers and enable knowledge sharing applications that use AI to tailor product and service recommendations for every customer being quoted and sold to. Imagine resellers being able to create quotes based on the most buildable products that could be delivered in days to buying customers. That’s possible using a knowledge-sharing network. Amazon’s success with Alexa design wins shows how their use of knowledge-sharing systems helped to provide insights needed across automotive OEMs wanted to add voice-activated AI technology to their next-generation vehicles.

References

BMC, Maximizing the Value of Hybrid IT with Holistic Monitoring and AIOps (10 pp., PDF).

BMC Blogs, 2019 Gartner Market Guide for AIOps Platforms, December 2, 2019

Cai, S., Goh, M., De Souza, R., & Li, G. (2013). Knowledge sharing in collaborative supply chains: twin effects of trust and power. International journal of production Research51(7), 2060-2076.

Capgemini Research Institute, Smart factories @ scale: Seizing the trillion-dollar prize through efficiency by design and closed-loop operations, 2019.

Columbus, L, The 10 Most Valuable Metrics in Smart Manufacturing, Forbes, November 20, 2020

Jeffrey H Dyer, & Kentaro Nobeoka. (2000). Creating and managing a high-performance knowledge-sharing network: The Toyota case. Strategic Management Journal: Special Issue: Strategic Networks, 21(3), 345-367.

Myers, M. B., & Cheung, M. S. (2008). Sharing global supply chain knowledge. MIT Sloan Management Review49(4), 67.

Wang, C., & Hu, Q. (2020). Knowledge sharing in supply chain networks: Effects of collaborative innovation activities and capability on innovation performance. Technovation94, 102010.

 

Six Areas Where AI Is Improving Customer Experiences

Six Areas Where AI Is Improving Customer Experiences

Bottom Line: This year’s hard reset is amplifying how vital customer relationships are and how much potential AI has to find new ways to improve them.

  • 30% of customers will leave a brand and never come back because of a bad experience.
  • 27% of companies say improving their customer intelligence and data efforts are their highest priority when it comes to customer experience (CX).
  • By 2023, 30% of customer service organizations will deliver proactive customer services by using AI-enabled process orchestration and continuous intelligence, according to Gartner.
  • $13.9B was invested in CX-focused AI and $42.7B in CX-focused Big Data and analytics in 2019, with both expected to grow to $90B in 2022, according to IDC.

The hard reset every company is going through today is making senior management teams re-evaluate every line item and expense, especially in marketing. Spending on Customer Experience is getting re-evaluated as are supporting AI, analytics, business intelligence (BI), and machine learning projects and spending. Marketers able to quantify their contributions to revenue gains are succeeding the most at defending their budgets.

Fundamentals of CX Economics

Knowing if and by how much CX initiatives and strategies are paying off has been elusive. Fortunately, there are a variety of benchmarks and supporting methodologies being developed that contextualize the contribution of CX. KPMG’s recent study, How Much Is Customer Experience Worth? provides guidance in the areas of CX and its supporting economics. The following table provides an overview of key financial measures’ interrelationships with CX. The table below summarizes their findings:

The KPMG study also found that failing to meet customer expectations is two times more destructive than exceeding them. That’s a powerful argument for having AI and machine learning ingrained into CX company-wide. The following graphic quantifies the economic value of improving CX:

Six Areas Where AI Is Improving Customer Experiences

 

Where AI Is Improving CX

For AI projects to make it through the budgeting crucible that the COVID-19 pandemic has created, they’re going to have to show a contribution to revenue, cost reduction, and improved customer experiences in a contactless world. Add in the need for any CX strategy to be on a resilient, proven platform and the future of marketing comes into focus. Examples of platforms and customer-centric digital transformation networks that can help re-center an organization on data- and AI-driven customer insights include BMC’s Autonomous Digital Enterprise (ADE) and others. The framework is differentiated from many others in how it is designed to capitalize on AI and Machine Learning’s core strengths to improve every aspect of the customer (CX) and  employee experience (EX). BMC believes that providing employees with the digital resources they need to excel at their jobs also delivers excellent customer experiences.

Having worked my way through college in customer service roles, I can attest to how valuable having the right digital resources are for serving customers What I like about their framework is how they’re trying to go beyond just satisfying customers, they’re wanting to delight them. BMC calls this delivering a transcendent customer experience. From my collegiate career doing customer service, I recall the e-mails delighted customers sent to my bosses that would be posted along a wall in our offices. In customer service and customer experience, you get what you give. Having customer service reps like my younger self on the front line able to get resources and support they need to deliver more authentic and responsive support is key. I see BMC’s ADE doing the same by ensuring a scalable CX strategy that retains its authenticity even as response times shrink and customer volume increases.

The following are six ways AI can improve customer experiences:

  • Improving contactless personalized customer care is considered one of the most valuable areas where AI is improving customer experiences. These “need to do” marketing areas have the highest complexity and highest benefit. Marketers haven’t been putting as much emphasis on the “must do” areas of high benefit and low complexity, according to Capgemini’s analysis. These application areas include Chatbots and virtual assistants, reducing revenue churn, facial recognition and product and services recommendations. Source:  Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting. (PDF, 28 pp).

Six Areas Where AI Is Improving Customer Experiences

  • Anticipating and predicting how each customers’ preferences of where, when, and what they will buy will change and removing roadblocks well ahead of time for them. Reducing the friction customers face when they’re attempting to buy within a channel they’ve never purchased through before can’t be left to chance. Using augmented, predictive analytics to generate insights in real-time to customize the marketing mix for every individual Customer improves sales funnels, preserves margins, and can increase sales velocity.
  • Knowing which customer touchpoints are the most and least effective in improving CX and driving repurchase rates. Successfully using AI to improve CX needs to be based on data from all trackable channels that prospects and customers interact with. Digital touchpoints, including mobile app usage, social media, and website visits, all need to be aggregated into data sets ML algorithms to use to learn more about every Customer continually and anticipate which touchpoint is the most valuable to them and why. Knowing how touchpoints stack up from a customer’s point of view immediately says which channels are doing well and which need improvement.
  • Recruiting new customer segments by using CX improvements to gain them as prospects and then convert them to customers. AI and ML have been used for customer segmentation for years. Online retailers are using AI to identify which CX enhancements on their mobile apps, websites, and customer care systems are the most likely to attract new customers.
  • Retailers are combining personalization, AI-based pattern matching, and product-based recommendation engines in their mobile apps enabling shoppers to try on garments they’re interested in buying virtually. Machine learning excels at pattern recognition, and AI is well-suited for fine-tuning recommendation engines, which are together leading to a new generation of shopping apps where customers can virtually try on any garment. The app learns what shoppers most prefer and also evaluates image quality in real-time, and then recommends either purchase online or in a store. Source: Capgemini, Building The Retail Superstar: How unleashing AI across functions offers a multi-billion dollar opportunity.

Six Areas Where AI Is Improving Customer Experiences

  • Relying on AI to best understand customers and redefine IT and Operations Management infrastructure to support them is a true test of how customer-centric a business is. Digital transformation networks need to support every touchpoint of the customer experience. They must have AI and ML designed to anticipate customer needs and deliver the goods and services required at the right time, via the Customer’s preferred channel. BMC’s Autonomous Digital Enterprise Framework is a case in point. Source: Cognizant, The 2020 Customer Experience.

Six Areas Where AI Is Improving Customer Experiences

Additional Resources

4 Ways to Use Machine Learning in Marketing Automation, Medium, March 30, 2017

84 percent of B2C marketing organizations are implementing or expanding AI in 2018. Infographic. Amplero.

AI, Machine Learning, and their Application for Growth, Adelyn Zhou. SlideShare/LinkedIn. Feb. 8, 2018.

AI: The Next Generation of Marketing Driving Competitive Advantage throughout the Customer Life Cycle (PDF, 10 pp., no opt-in), Forrester, February 2017.

Artificial Intelligence for Marketers 2018: Finding Value beyond the Hype, eMarketer. (PDF, 20 pp., no opt-in). October 2017

Artificial Intelligence: The Next Frontier? McKinsey Global Institute (PDF, 80 pp., no opt-in)

Artificial Intelligence: The Ultimate Technological Disruption Ascends, Woodside Capital Partners. (PDF, 111 pp., no opt-in). January 2017.

AWS Announces Amazon Machine Learning Solutions Lab, Marketing Technology Insights

B2B Predictive Marketing Analytics Platforms: A Marketer’s Guide, (PDF, 36 pp., no opt-in) Marketing Land Research Report.

Campbell, C., Sands, S., Ferraro, C., Tsao, H. Y. J., & Mavrommatis, A. (2020). From data to action: How marketers can leverage AI. Business Horizons, 63(2), 227-243.

David Simchi-Levi

Earley, S. (2017). The Problem of Personalization: AI-Driven Analytics at Scale. IT Professional, 19(6), 74-80.

Four Use Cases of Machine Learning in Marketing, June 28, 2018, Martech Advisor,

Gacanin, H., & Wagner, M. (2019). Artificial intelligence paradigm for customer experience management in next-generation networks: Challenges and perspectives. IEEE Network, 33(2), 188-194.

Hildebrand, C., & Bergner, A. (2019). AI-Driven Sales Automation: Using Chatbots to Boost Sales. NIM Marketing Intelligence Review11(2), 36-41.

How Machine Learning Helps Sales Success (PDF, 12 pp., no opt-in) Cognizant

Inside Salesforce Einstein Artificial Intelligence A Look at Salesforce Einstein Capabilities, Use Cases and Challenges, Doug Henschen, Constellation Research, February 15, 2017

Kaczmarek, J., & Ryżko, D. (2009). Quantifying and optimising user experience: Adapting AI methodologies for Customer Experience Management.

KPMG, Customer first. Customer obsessed. Global Customer Experience Excellence report, 2019 (92 pp., PDF)

Machine Learning for Marketers (PDF, 91 pp., no opt-in) iPullRank

Machine Learning Marketing – Expert Consensus of 51 Executives and Startups, TechEmergence.

Marketing & Sales Big Data, Analytics, and the Future of Marketing & Sales, (PDF, 60 pp., no opt-in), McKinsey & Company.

OpenText, AI in customer experience improves loyalty and retention (11 pp., PDF)

Sizing the prize – What’s the real value of AI for your business and how can you capitalize? (PDF, 32 pp., no opt-in) Pw

The New Frontier of Price Optimization, MIT Technology Review. September 07, 2017.

The Power Of Customer Context, Forrester (PDF, 20 pp., no opt-in) Carlton A. Doty, April 14, 2014. Provided courtesy of Pegasystems.

Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting

Using machine learning for insurance pricing optimization, Google Cloud Big Data and Machine Learning Blog,

What Marketers Can Expect from AI in 2018, Jacob Shama. Mintigo. January 16, 2018.

10 Ways AI Is Going To Improve Fintech In 2020

Bottom Line: AI & machine learning will improve Fintech in 2020 by increasing the accuracy and personalization of payment, lending, and insurance services while also helping to discover new borrower pools.

Zest.ai’s 2020 Predictions For AI In Credit And Lending captures the gradual improvements I’ve also been seeing across Fintech, especially at the tech stack level. Fintech startups, enterprise software providers, and the investors backing them believe cloud-based payments, lending, and insurance apps are must-haves to drive future growth. Combined with Internet & public cloud infrastructure and mobile apps, Fintech is evolving into a fourth platform that provides embedded financial services to any business needing to subscribe to them, as Matt Harris of Bain Capital Ventures writes in Fintech: The Fourth Platform – Part Two. Embedded Fintech has the potential to deliver $3.6 trillion in market value, according to Bain’s estimates, surpassing the $3 trillion in value created by cloud and mobile platforms. Accenture’s recent survey of C-suite executives’ adoption and plans found that 84% of all executives believe they won’t achieve their growth objectives unless they scale AI, and 75% believe they risk going out of business in 5 years if they don’t. The need to improve payment, lending and insurance combined with customers’ mercurial preferences for how they use financial services are challenges that AI and machine learning (ML) are solving today.

How AI & Machine Learning Will Improve Fintech In 2020

Fintech’s traditional tech stacks weren’t designed to anticipate and act quickly on real-time market indicators and data; they are optimized for transaction speed and scale. What’s needed is a new tech stack that can flex and adapt to changing market and customer requirements in real-time. AI & machine learning are proving to be very effective at interpreting and recommending actions based on real-time data streams. They’re also improving customer experiences and reducing risk, two additional factors motivating lenders to upgrade their traditional tech stacks with proven new technologies.

The following are ten predictions of how AI will improve FinTech in 2020, thank you Zest.ai for your insights and sharing your team’s expertise on these:

  1. Zest predicts lenders will increase the use of ML as the way to grow into the no-file/thin-file segments, especially rising Gen Zers with little to no credit history. Traditional tech stacks make it difficult to find and grow new borrower pools. Utah-based auto lenderPrestige Financial Services chose to rely on an AI solution instead. The chose Zest AI to find and cultivate a borrower pool of people in the 19-35 age group. Using an AI-based loan approval workflow, Prestige was able to increase loan approval rates by 25%, and for people under 20 by threefold.
  2. Mortgage lenders’ adoption of AI for finding qualified first-time homeowners is going to increase as more realize Gen Z (23 – 36-year-olds) are the most motivated of all to purchase a home. In 2020, long-standing assumptions about first-time homebuyers and their motivations are going to change. A recent story in HousingWire, “This generation is the most willing to do whatever it takes to buy a home,” explains that Gen Z, or those people born between 1996 and 2010, are the most likely to relocate to purchase a new home. A recent TransUnion market analysis found 70% of Gen Z prospective home buyers are willing to relocate to buy their first home, leading all active generations. 65% of Gen Xers, or those born between 1965 to 1980, were the second most likely to move. AI and ML can help lenders more precisely target potential Gen Z first-time homebuyers, measuring the impact of their marketing campaigns on attracting new borrowers. The TransUnion market analysis finds that 58% of respondents are delaying a home purchase due to anticipated high down payments or monthly payments. 51% said the need to obtain a 10% to 20% down payment was stopping them. According to Joe Mellman, TransUnion senior vice president, and mortgage business leader, “Many of our potential first-time homebuyer respondents don’t seem to be aware of the wide variety of financing options available to them.” The TransUnion market analysis found that many of the potential first-time homeowner respondents have never heard of low down-payment options from Fannie Mae, Freddie Mac, or of the Federal Housing Administration.
  3. Zest predicts banks and other financial institutions will strengthen their business cases for AI pilots and production-level deployments by recognizing the operating expense (OPEX) savings of ML. Several recurring costs involved in developing, validating and deploying credit risk models can be reduced or cut by switching to machine learning, according to Zest. Lenders can get the most out of their data acquisition spending by using modern ML tools to assess which data sources yield the most predictive power for a model. Lenders will also switch to ML to simplify their IT and risk operations by consolidating into fewer models that can do the work of what used to be multiple individual linear models for every customer segment.
  4. Compliance cost growth will decline even faster due to ML. Financial institutions that have AI/ML algorithms in production log every change in a model and can produce all the required model risk governance documents in minutes instead of a compliance team manually taking weeks to do it. Automated tools also shrink the time it takes to do fair lending testing by building less discriminatory models on the fly rather than the time-intensive approach of drop-one-variable-and-test. Time is money, especially in lending.
  5. AI and ML will gain critical mass in collections, providing insights into which approach is the most effective for a given customer. Zest has built collections models for a few financial services firms and has found them to be very effective. Collections logic, predicting which customers to wait on when bills are past due, is a strong fit for machine learning. With one bank, Zest found that ML models can, for example, accurately target the borrowers most likely to make a certain minimum payment based on the value of their loan within 60 days of falling behind their due date. In three months, Zest built two models from traditional credit bureaus and the bank’s proprietary collections metrics to predict this repayment propensity of borrowers. One insight into the data was that borrower behavior accounted for just over half of the bank’s ability to collect missed payments, but operations played a significant role.
  6. If there’s a downturn, ML will get blamed (even though it can actually help in a downturn). Pankaj Kulshreshtha, CEO of Scienaptics, originally made this observation at the Money 20/20 Conference held earlier this year. Models built only in good times can see their correlations break when times go bad. Lenders who observe best practices in AI and ML adoption will make sure to stress-test their models, perhaps by including synthetic data to add heterogeneity. Better ML monitoring will be important, too. “ML models and algorithmic monitors can do a better job seeing around corners, spotting rising numbers of inbound outlier applicants that signal more volatile conditions ahead,” says Seth Silverstein, Executive Vice President of Credit Risk Analytics for Zest AI.  An effective ML monitoring tool should excel at spotting outlier applicants and feature drift, ensuring more accurate model outcomes.
  7. 2020 is going to be a break-out year for partnerships and co-opetition as payments, lending and insurance firms vie for a growth position in embedded financial services. Matt Harris of Bain Capital Ventures’ prediction of embedded fintech suggests a proliferation of cloud-based Fintech apps around the core: payments, lending, insurance. That creates an ideal situation for AI-related alliances and partnerships among the incumbent lenders, startups, data aggregators and the CRAs. To Harris, the layers of the stack are centered around connectivity, intelligence, and ubiquity. According to Crunchbase, there have been 51 Fintech acquisitions in 2019 alone. Plaid’s acquisition of Quovo in January for approximately $200 million and Fiserv’s acquisition of First Data reflect how Fintechs are creating their own unique tech stacks already.
  8.  Zest predicts Fintechs will seek out AI and ML modeling expertise more so than build expertise and teams on their own, which will be costlier and take longer. Embedded Fintech’s future adoption rate is predicated on how effective development efforts are today at minimizing incidental bias and providing customers with greater visibility into how and why models provide specific results “Some of these startups are bringing their own data science and ML models. We have to hope these firms own, build, or buy the tools to ensure their models are inclusive, free of incidental bias, and use transparent AI customers can trust. We see explainable AI as being an essential feature or service in that tech stack,” says Zest’s Silverstein.
  9.  Fintechs will rely on AI and ML to help close the talent gap each of them has today while also improving the effectiveness of their talent management strategies. Finding, recruiting, and hiring the best candidates for development, engineering, marketing, sales, and senior management roles is an area Fintechs will increasingly adopt AI and ML for in 2020. Fintech CEOs and CHROs will begin upskilling programs for themselves and their teams to increase AI fluency and skills mastery in 2020. According to a recent Harris Interactive survey completed in collaboration with Eightfold titled Talent Intelligence And Management Report 2019-2020, 73% of U.S. CEOs and CHROs plan to use more AI in the next three years to improve talent management.
  10. Credit unions will adopt ML in 2020 to automate routine tasks and free up human underwriters to focus on providing more personalized services, including improvements in inquiry resolution & dispute and fraud management. Credit unions are built on an annuity-based business model that delivers successively higher profitability the longer a member is retained. Credit unions will capitalize on ML by driving up loan approvals with no added risk and automating more of the loan approval process. By the end of 2020, according to a Fannie Mae survey of mortgage lenders, 71% of credit unions plan to investigate, test, or fully implement AI/ML solutions – up from just 40% in 2018. AI and ML will also be adopted across credit unions to improve inquiry resolution & dispute and fraud management while improving multichannel customer experiences. Providing real-time, relevant responses to customers to expedite inquiries and dispute resolutions using AI and ML is going to become commonplace in 2020. AI and ML are predicted to make a significant contribution to automating anomaly detection and borrower default risk assessment as the graphic below from Fannie Mae’s Mortgage Lender Sentiment Survey® How Will Artificial Intelligence Shape Mortgage Lending? Q3 2018 Topic Analysis illustrates:

 

 

Predicting How AI Will Improve Talent Management In 2020

Predicting How AI Will Improve Talent Management In 2020

47% of U.S.-based enterprises are using AI today for recruitment, leading all countries in the survey. U.S.-based enterprises’’ adoption of AI for recruitment soared in the last year, jumping from 22% in 2018 to 47% this year based on last years’ Harris Interactive Talent Intelligence and Management Report 2018.

  • 73% of U.S. CEOs and CHROs plan to use more AI in the next three years to improve talent management.
  • U.S.-based enterprises’’ adoption of AI for recruitment soared in the last year, jumping from 22% in 2018 to 47% this year.
  • U.S.-based enterprises lead in the use of AI to automate repetitive tasks (44%) and employee retention (42%).

These and many other fascinating insights are from a recent study completed by Harris Interactive in collaboration with Eightfold titled Talent Intelligence And Management Report 2019-2020, which provides insights into how CHROs are adopting AI today and in the future. You can download a copy here. A total of 1,350 CEOs and CHROs from the U.S., France, Germany, and the U.K. responded to the survey. One of the most noteworthy findings is how U.S-based CEOs and CHROs lead the world in prioritizing and taking action on improving their teams and their own AI skills. The more expertise they and their teams have with AI, the more effective they will be achieving operational improvements while taming the bias beast. The following graphic provides insights into how the four nations surveyed vary by their CEOs’ and CHROs’ perception of new technologies having had positive impacts, their plans for using AI in three years, and employee’s concerns about AI:

Predicting How AI Will Improve Talent Management In 2020

Predicting The Future Of AI In Talent Management

Four leading experts who are actively advising clients, implementing, and using AI to solve talent management challenges shared their predictions of how AI will improve talent management in 2020. The panel includes Kelly O. Kay, Partner, Heidrick & Struggles, Jared Lucas, Chief People Officer at MobileIron, Mandy Sebel, Senior Vice President, People at UiPath and David Windley CEO, IQTalent Partners. Mr. Kay leads the Software Practice for Heidrick & Struggles, a leading executive search and consulting firm commented: “As we all know, the talent crisis of 2019 is real and Eightfold’s application of AI on today is the most impactful approach I’ve seen and the outcomes they deliver eliminate unconscious bias, increases transparency and improves matching supply and demand of talent.” The following are their predictions of how AI will improve the following areas of talent management in 2020:

  • “Pertaining to talent attraction & acquisition-as adoption of intelligent automation and AI tools increases hiring managers and recruiters more easily uncover and surface overlooked talent pools,” said Mandy Sebel, Senior Vice President, People at UiPath.
  • “I predict that AI will become a requirement for companies in the screening of candidates due to the pervasive need to find higher-quality candidates at a faster pace,” said Jared Lucas, Chief People Officer at MobileIron.
  • “I believe the use of AI in the talent acquisition space will begin to hit critical mass in 2020. We are still in the early adopter phase, but the use of AI to match potential candidates to job profiles is catching on. Especially the use of AI for rediscovering candidates in ATS systems of larger corporations. Companies like Eightfold, Hiretual, and Atipica are leading the way,” said David Windley CEO, IQTalent Partners.
  • “Fear of job replacement will also subside, and more focus on job/role evolution as teams are experiencing firsthand how respective task elimination allows them to do more meaningful work,” commented Mandy Sebel, Senior Vice President, People at UiPath.
  • AI will provide the insights needed for CHROs to retain and grow their best talent, according to Jared Lucas, Chief People Officer at MobileIron. “I predict that AI will drive better internal mobility and internal candidate identification as companies are better able to mine their internal talent to fill critical roles,” he said.
  • Having gained credibility for executive and senior management recruiting, AI platforms’ use will continue to proliferate in 2020. “Private Equity is beginning to commercialize how AI can help select executives for roles based on competencies and experiences, which is exciting!” said Kelly O. Kay, Partner, Heidrick & Struggles.

AI Skills Among The Most In-Demand For 2020

AI Skills Among The Most In-Demand For 2020

Python, React (web), Angular, machine learning, and Docker will be the five most popular tech skills in 2020.

  • TensorFlow is the most popular tech skill of the last three years, exponentially increasing between 2016 and 2019 based on Udemy’s
  • Udemy sees robust demand for AI and data science skills, in addition to web development frameworks, cloud computing, and IT certifications, including AWS, CompTIA & Docker.
  • SAP expertise is projected to be the fastest-growing process-related skill set in 2020.

These and many other fascinating insights are from Udemy for Business’ 2020 Workplace Learning Trends Report: The Skills of the Future (48 pp., PDF, opt-in).  The report provides compelling evidence of how important it is to prepare workforces for the future of work in an AI-enabled world. Udemy predicts 2020 will be the year AI goes mainstream. The report states that “In the world of finance, investment funds managed by AI and computers account for 35% of America’s stock market today,” citing a recent article in The Economist, The rise of the financial machines. The following are the key insights from the report:

  • Python, React (web), Angular, machine learning, and Docker will be the five most popular tech skills in 2020. TensorFlow, OpenCV, and neural networks are the foundational skills many data scientists are pursuing and perfecting today to advance their AI-based career strategies. Mastering those three skills is essential for understanding and developing AI apps and platforms. TensorFlow is a free and open-source software library for dataflow and differentiable programming across a range of tasks. It is a symbolic math library and is also used for machine learning applications such as neural networks. The following is a comparison of the top 10 most popular tech skills in 2020 and the top 10 tech skills that grew in popularity between 2016 and 2019.
AI Skills among the Most In-Demand For 2020

Udemy for Business’ 2020 Workplace Learning Trends Report: The Skills of the Future

  • The top 10 emerging tech skills in 2020 will be web development, quantum computing, and Internet of Things IoT). Udemy analyzed the emerging skills that over 40M people are learning on Udemy today, and found that Gatsby.js, a new web development framework tool, is gaining rapid adoption. Additional web development tools include React Hooks, Next.js, and SwiftUI, a user interface tool for Apple apps. Entirely new skills, including quantum computing and ESP32, used in the IoT development, are also among the top 1 emerging tech skills of 2020.
AI Skills among the Most In-Demand For 2020

Udemy for Business’ 2020 Workplace Learning Trends Report: The Skills of the Future

  • SAP enterprise software expertise, knowledge of the ISO/IEC 27001 standard, information security, and Microsoft Dynamics 365 are projected to be the four of the fastest-growing process and tools skills in 2020. Udemy also found a strong interest in Robotic Process Automation (RPA) and Business Process Management (BPM). Robotic Process Automation (RPA) refers to the use of process automation tools to quickly replicate how human beings perform routine daily office work using popular productivity apps, including Microsoft Excel, databases, or web applications.
AI Skills among the Most In-Demand For 2020

Udemy for Business’ 2020 Workplace Learning Trends Report: The Skills of the Future

 

  • Chef Software expertise, network security, penetration testing, Linux security, and AWS Certified Cloud are predicted among the fastest-growing skills for IT professionals in 2020. Chef software is prevalent in IT organizations and is used for streamlining the task of configuring & maintaining a company’s servers. Chef has invested in integrating with many of the most popular cloud-based platforms, including Rackspace, Microsoft Azure, and Amazon Elastic Compute Cloud, to automatically provision and configure new machines.
AI Skills among the Most In-Demand For 2020

Udemy for Business’ 2020 Workplace Learning Trends Report: The Skills of the Future

 

10 Ways AI And Machine Learning Are Improving Endpoint Security

  • Gartner predicts $137.4B will be spent on Information Security and Risk Management in 2019, increasing to $175.5B in 2023, reaching a CAGR of 9.1%. Cloud Security, Data Security, and Infrastructure Protection are the fastest-growing areas of security spending through 2023.
  •  69% of enterprise executives believe artificial intelligence (AI) will be necessary to respond to cyberattacks with the majority of telecom companies (80%) saying they are counting on AI to help identify threats and thwart attacks according to Capgemini.
  •  Spending on AI-based cybersecurity systems and services reached $7.1B in 2018 and is predicted to reach $30.9B in 2025, attaining a CAGR of 23.4% in the forecast period according to Zion Market Research.

Traditional approaches to securing endpoints based on the hardware characteristics of a given device aren’t stopping breach attempts today. Bad actors are using AI and machine learning to launch sophisticated attacks to shorten the time it takes to compromise an endpoint and successfully breach systems. They’re down to just 7 minutes after comprising an endpoint and gaining access to internal systems ready to exfiltrate data according to Ponemon. The era of trusted and untrusted domains at the operating system level, and “trust, but verify” approaches are over. Security software and services spending is soaring as a result, as the market forecasts above show.

AI & Machine Learning Are Redefining Endpoint Security

AI and machine learning are proving to be effective technologies for battling increasingly automated, well-orchestrated cyberattacks and breach attempts. Attackers are combining AI, machine learning, bots, and new social engineering techniques to thwart endpoint security controls and gain access to enterprise systems with an intensity never seen before. It’s becoming so prevalent that Gartner predicts that more than 85% of successful attacks against modern enterprise user endpoints will exploit configuration and user errors by 2025. Cloud platforms are enabling AI and machine learning-based endpoint security control applications to be more adaptive to the proliferating types of endpoints and corresponding threats. The following are the top ten ways AI and machine learning are improving endpoint security:

  • Using machine learning to derive risk scores based on previous behavioral patterns, geolocation, time of login, and many other variables is proving to be effective at securing and controlling access to endpoints. Combining supervised and unsupervised machine learning to fine-tune risk scores in milliseconds is reducing fraud, thwarting breach attempts that attempt to use privileged access credentials, and securing every identity on an organizations’ network. Supervised machine learning models rely on historical data to find patterns not discernable with rules or predictive analytics. Unsupervised machine learning excels at finding anomalies, interrelationships, and valid links between emerging factors and variables. Combining both unsupervised and supervised machine learning is proving to be very effective in spotting anomalous behavior and reducing or restricting access.
  • Mobile devices represent a unique challenge to achieving endpoint security control, one that machine learning combined with Zero Trust is proving to be integral at solving.  Cybercriminals prefer to steal a mobile device, its passwords, and privileged access credentials than hack into an organization. That’s because passwords are the quickest onramp they have to the valuable data they want to exfiltrate and sell. Abandoning passwords for new techniques including MobileIron’s zero sign-on approach shows potential for thwarting cybercriminals from getting access while hardening endpoint security control. Securing mobile devices using a zero-trust platform built on a foundation of unified endpoint management (UEM) capabilities enables enterprises to scale zero sign-on for managed and unmanaged services for the first time. Below is a graphic illustrating how they’re adopting machine learning to improve mobile endpoint security control:
  • Capitalizing on the core strengths of machine learning to improve IT asset management is making direct contributions to greater security.  IT Management and security initiatives continue to become more integrated across organizations, creating new challenges to managing endpoint security across each device. Absolute Software is taking an innovative approach to solve the challenge of improving IT asset management, so endpoint protection is strengthened at the same time. Recently I had a chance to speak with Nicko van Someren, Ph.D. and Chief Technology Officer at Absolute Software, where he shared with me how machine learning algorithms are improving security by providing greater insights into asset management. “Keeping machines up to date is an IT management job, but it’s a security outcome. Knowing what devices should be on my network is an IT management problem, but it has a security outcome. And knowing what’s going on and what processes are running and what’s consuming network bandwidth is an IT management problem, but it’s a security outcome. I don’t see these as distinct activities so much as seeing them as multiple facets of the same problem space. Nicko added that Absolute’s endpoint security controls begin at the BIOS level of over 500M devices that have their endpoint code embedded in them. The Absolute Platform is comprised of three products: Persistence, Intelligence, and Resilience—each building on the capabilities of the other. Absolute Intelligence standardizes the data around asset analytics and security advocacy analytics to allow Security managers to ask any question they want. (“What’s slowing down my device? What’s working and what isn’t? What has been compromised? What’s consuming too much memory? How does this deviate from normal performance?”). An example of Absolute’s Intelligence providing insights into asset management and security is shown below:
  • Machine learning has progressed to become the primary detection method for identifying and stopping malware attacks. Machine learning algorithms initially contributed to improving endpoint security by supporting the back-end of malware protection workflows. Today more vendors are designing endpoint security systems with machine learning as the primary detection method. Machine learning trained algorithms can detect file-based malware and learn which files are harmful or not based on the file’s metadata and content. Symantec’s Content & Malware Analysis illustrates how machine learning is being used to detect and block malware. Their approach combines advanced machine learning and static code file analysis to block, detect, and analyze threats and stop breach attempts before they can spread.
  • Supervised machine learning algorithms are being used for determining when given applications are unsafe to use, assigning them to containers, so they’re isolated from production systems. Taking into account an applications’ threat score or reputation, machine learning algorithms are defining if dynamic application containment needs to run for a given application. Machine learning-based dynamic application containment algorithms and rules block or log unsafe actions of an application based on containment and security rules. Machine learning algorithms are also being used for defining predictive analytics that define the extent of a given applications’ threat.
  •  Integrating AI, machine learning, and SIEM (Security Information and Event Management) in a single unified platform are enabling organizations to predict, detect, and respond to anomalous behaviors and events. AI and machine learning-based algorithms and predictive analytics are becoming a core part of SIEM platforms today as they provide automated, continuous analysis and correlation of all activity observed within a given IT environment. Capturing, aggregating, and analyzing endpoint data in real-time using AI techniques and machine learning algorithms is providing entirely new insights into asset management and endpoint security. One of the most interesting companies to watch in this area is LogRhythm. They’ve developed an innovative approach to integrating AI, machine learning, and SIEM in their LogRhythm NextGen SIEM Platform, which delivers automated, continuous analysis and correlation of all activity observed within an IT environment. The following is an example of how LogRhythm combines AI, machine learning, and SIEM to bring new insights into securing endpoints across a network.
  • Machine learning is automating the more manually-based, routine incident analysis, and escalation tasks that are overwhelming security analysts today. Capitalizing on supervised machine learnings’ innate ability to fine-tune algorythms in milliseconds based on the analysis of incidence data, endpoint security providers are prioritizing this area in product developnent. Demand from potential customers remains strong, as nearly everyone is facing a cybersecurity skills shortage while facing an onslaught of breach attempts.  “The cybersecurity skills shortage has been growing for some time, and so have the number and complexity of attacks; using machine learning to augment the few available skilled people can help ease this. What’s exciting about the state of the industry right now is that recent advances in Machine Learning methods are poised to make their way into deployable products,” Absolute’s CTO Nicko van Someren added.
  • Performing real-time scans of all processes with an unknown or suspicious reputation is another way how machine learning is improving endpoint security. Commonly referred to as Hunt and Respond, supervised and unsupervised machine learning algorithms are being used today to seek out and resolve potential threats in milliseconds instead of days. Supervised machine learning algorithms are being used to discover patterns in known or stable processes where anomalous behavior or activity will create an alert and pause the process in real-time. Unsupervised machine learning algorithms are used for analyzing large-scale, unstructured data sets to categorize suspicious events, visualize threat trends across the enterprise, and take immediate action at a single endpoint or across the entire organization.
  • Machine learning is accelerating the consolidation of endpoint security technologies, a market dynamic that is motivating organizations to trim back from the ten clients they have on average per endpoint today. Absolute Software’s 2019 Endpoint Security Trends Report found that a typical device has ten or more endpoint security agents installed, each often conflicting with the other. The study also found that enterprises are using a diverse array of endpoint agents, including encryption, AV/AM, and Endpoint Detection and Response (EDR). The wide array of endpoint solutions make it nearly impossible to standardize a specific test to ensure security and safety without sacrificing speed. By helping to accelerate the consolidation of security endpoints, machine learning is helping organizations to see the more complex and layered the endpoint protection, the greater the risk of a breach.
  • Keeping every endpoint in compliance with regulatory and internal standards is another area machine learning is contributing to improving endpoint security. In regulated industries, including financial services, insurance, and healthcare, machine learning is being deployed to discover, classify, and protect sensitive data. This is especially the case with HIPAA (Health Insurance Portability and Accountability Act) compliance in healthcare. Amazon Macie is representative of the latest generation of machine learning-based cloud security services. Amazon Macie recognizes sensitive data such as personally identifiable information (PII) or intellectual property and provides organizations with dashboards, alerts, and contextual insights that give visibility into how data is being accessed or moved. The fully managed service continuously monitors data access activity for anomalies and generates detailed alerts when it detects the risk of unauthorized access or inadvertent data leaks. An example of one of Amazon Macie’s dashboard is shown below:

How AI Is Protecting Against Payments Fraud

  • 80% of fraud specialists using AI-based platforms believe the technology helps reduce payments fraud.
  • 63.6% of financial institutions that use AI believe it is capable of preventing fraud before it happens, making it the most commonly cited tool for this purpose.
  • Fraud specialists unanimously agree that AI-based fraud prevention is very effective at reducing chargebacks.
  • The majority of fraud specialists (80%) have seen AI-based platforms reduce false positives, payments fraud, and prevent fraud attempts.

AI is proving to be very effective in battling fraud based on results achieved by financial institutions as reported by senior executives in a recent survey, AI Innovation Playbook published by PYMNTS in collaboration with Brighterion. The study is based on interviews with 200 financial executives from commercial banks, community banks, and credit unions across the United States. For additional details on the methodology, please see page 25 of the study. One of the more noteworthy findings is that financial institutions with over $100B in assets are the most likely to have adopted AI, as the study has found 72.7% of firms in this asset category are currently using AI for payment fraud detection.

Taken together, the findings from the survey reflect how AI thwarts payments fraud and deserves to be a high priority in any digital business today. Companies, including Kount and others, are making strides in providing AI-based platforms, further reducing the risk of the most advanced, complex forms of payments fraud.

Why AI Is Perfect For Fighting Payments Fraud

Of the advanced technologies available for reducing false positives, reducing and preventing fraud attempts, and reducing manual reviews of potential payment fraud events, AI is ideally suited to provide the scale and speed needed to take on these challenges. More specifically, AI’s ability to interpret trend-based insights from supervised machine learning, coupled with entirely new knowledge gained from unsupervised machine learning algorithms are reducing the incidence of payments fraud. By combining both machine learning approaches, AI can discern if a given transaction or series of financial activities are fraudulent or not, alerting fraud analysts immediately if they are and taking action through predefined workflows. The following are the main reasons why AI is perfect for fighting payments fraud:

  • Payments fraud-based attacks are growing in complexity and often have a completely different digital footprint or pattern, sequence, and structure, which make them undetectable using rules-based logic and predictive models alone. For years e-commerce sites, financial institutions, retailers, and every other type of online business relied on rules-based payment fraud prevention systems. In the earlier years of e-commerce, rules and simple predictive models could identify most types of fraud. Not so today, as payment fraud schemes have become more nuanced and sophisticated, which is why AI is needed to confront these challenges.
  • AI brings scale and speed to the fight against payments fraud, providing digital businesses with an immediate advantage in battling the many risks and forms of fraud. What’s fascinating about the AI companies offering payments fraud solutions is how they’re trying to out-innovate each other when it comes to real-time analysis of transaction data. Real-time transactions require real-time security. Fraud solutions providers are doubling down on this area of R&D today, delivering impressive results. The fastest I’ve seen is a 250-millisecond response rate for calculating risk scores using AI on the Kount platform, basing queries on a decades-worth of data in their universal data network. By combining supervised and unsupervised machine learning algorithms, Kount is delivering fraud scores that are twice as predictive as previous methods and faster than competitors.
  • AI’s many predictive analytics and machine learning techniques are ideal for finding anomalies in large-scale data sets in seconds. The more data a machine learning model has to train on, the more accurate its predictive value. The greater the breadth and depth of data, a given machine learning algorithm learns from means more than how advanced or complex a given algorithm is. That’s especially true when it comes to payments fraud detection where machine learning algorithms learn what legitimate versus fraudulent transactions look like from a contextual intelligence perspective. By analyzing historical account data from a universal data network, supervised machine learning algorithms can gain a greater level of accuracy and predictability. Kount’s universal data network is among the largest, including billions of transactions over 12 years, 6,500 customers, 180+ countries and territories, and multiple payment networks. The data network includes different transaction complexities, verticals, and geographies, so machine learning models can be properly trained to predict risk accurately. That analytical richness includes data on physical real-world and digital identities creating an integrated picture of customer behavior.

Bottom Line:  Payments fraud is insidious, difficult to stop, and can inflict financial harm on any business in minutes. Battling payment fraud needs to start with a pre-emptive strategy to thwart fraud attempts by training machine learning models to quickly spot and act on threats then building out the strategy across every selling and service channel a digital business relies on.

Customer Experiences Define Success In A Digital-First World

Customer Experiences Define Success In A Digital-First World

  • 91% of enterprises have adopted or have plans to adopt a digital-first strategy. Of these enterprises, 48% already have a digital-first approach in place.
  • Creating better customer experiences (67%), improving process efficiency through automation (53%), and driving new revenue (48%) are the top three digital business strategies enterprises are investing in today.
  • 35% of enterprises have experienced revenue growth due to digital business initiatives over the past 12 months.
  • 5G, Artificial Intelligence, and Machine Learning are the top technologies being researched by enterprises who are defining digital business strategies.
  • Enterprises are planning to spend $15.3M on digital initiatives over the next 12 months. 59% will be allocated to technology, and 41% will be dedicated to people and skills.

These and many other fascinating insights are from the second annual IDG Digital Business study, The State of Digital Business Transformation 2019. You can download a summary of the slides here (7 pp., PDF, opt-in). The survey’s methodology is based on 702 interviews across nine industries with technology, financial services, and business services (consulting, legal and real estate) comprising 43% of all respondents. IDG relied on CIO, Computerworld, CSO, InfoWorld, and Network World visitors as their primary respondent base. For additional details regarding the methodology, please see page 2 of the study.

The study’s primary goal was to gain a better understanding of where organizations are in their approaches to becoming digital-first businesses. The study captures the strategies and technologies businesses are adopting to ensure digitally-driven growth with customer experience improvements being proven as a growth catalyst. Key insights from the survey include the following:

  • 52% of enterprises define digital business as meeting customer experience expectations, jumping to 65% for financial services enterprises. Customer expectations rule all other categories of how an enterprise defines a digital business. 49% define digital business as enabling worker productivity with mobile apps, data access, and AI-assisted automation. The following graphic compares how enterprises define their digital business. Please click on the graphic to expand for easier reading.

Customer Experiences Define Success In A Digital-First World

  • Mobile devices and apps are enterprises’ platform of choice for launching digital-first strategies in 2019. Mobile apps and the platforms supporting them provide the needed scale, speed-to-market, and performance gains through application-level improvements that all businesses need to gain initial adoption and growth with their digital-first strategies. IDG found that private cloud and business process management are the second- and third-most used technologies to drive digital-first initiatives. Enterprises also have a considerable lead when it comes to mobile app availability: 74% have mobile apps today compared to 51% of SMBs.

  • Internet of Things (IoT), Artificial Intelligence (AI) and machine learning are the leading three initiatives enterprises have in pilot today as part of their digital-first initiatives. 21% of all organizations surveyed are in one or more IoT pilots, and 20% of organizations are piloting AI and machine learning projects today. Nearly a third of all organizations (29%) have multi-cloud configurations in production today, and 25% have software-defined Wide Area Networks (WANs).

  • 57% of enterprises (companies with over 1K employees) say improving new product and service offerings by digitally enabling operations is the single greatest source of revenue growth. Digitally enabling or streamlining new product and development processes and the systems supporting them also improve the ability to innovate and size new opportunities (49%). It makes sense that once the new product development process is more digitally enabled, an organization will be able to more efficiently launch new capabilities (47% in enterprises) and improve sales capacity including upsell and cross-sell (41% overall).

  • Creating better customer experiences (67%), improving process efficiency through automation (53%), and driving new revenue (48%) are the top three digital business strategies enterprises are investing in today. Business Management, including General Managers with P&L responsibility, are placing a high priority on creating a better customer experience, far above all else. They’re the revenue drivers of businesses adopting a digital-first strategy today as well, over 10% higher than IT Management and 12% higher than IT executives.

  • In the most successful digital-first businesses, the CIO the most visible, vocal, and successful in leading change management initiatives. Six of the nine core dimensions of a successful digital enablement strategy are dominated by CIOs. Technology Needs Assessment (48%), IT Skills Assessment (48%) and Change Management (33%) are the three areas CIOs are making the greatest contribution to digital-first strategies on the part of their businesses. It’s important to note that CIOs are far and away, the champion and leader of data management strategies as well.

  • Enterprises are placing a high priority on data security and protection as part of the digital-first initiatives, with 27% having cybersecurity systems in place. It’s encouraging to see business and IT leaders making data and system security their highest priority, getting results quickly in this area. Technology needs assessment, and IT skills assessment (both 24%) are also areas where enterprises are making strong progress. As the CIO owns these areas and is also the person most likely to be owning change management, it’s understandable how advanced digital-first businesses are on these two dimensions. The following graphic compares the progress enterprises are making in becoming a digitally-driven business.

How To Improve Supply Chains With Machine Learning: 10 Proven Ways

Bottom line: Enterprises are attaining double-digit improvements in forecast error rates, demand planning productivity, cost reductions and on-time shipments using machine learning today, revolutionizing supply chain management in the process.

Machine learning algorithms and the models they’re based on excel at finding anomalies, patterns and predictive insights in large data sets. Many supply chain challenges are time, cost and resource constraint-based, making machine learning an ideal technology to solve them. From Amazon’s Kiva robotics relying on machine learning to improve accuracy, speed and scale to DHL relying on AI and machine learning to power their Predictive Network Management system that analyzes 58 different parameters of internal data to identify the top factors influencing shipment delays, machine learning is defining the next generation of supply chain management. Gartner predicts that by 2020, 95% of Supply Chain Planning (SCP) vendors will be relying on supervised and unsupervised machine learning in their solutions. Gartner is also predicting by 2023 intelligent algorithms, and AI techniques will be an embedded or augmented component across 25% of all supply chain technology solutions.

The ten ways that machine learning is revolutionizing supply chain management include:

  • Machine learning-based algorithms are the foundation of the next generation of logistics technologies, with the most significant gains being made with advanced resource scheduling systems. Machine learning and AI-based techniques are the foundation of a broad spectrum of next-generation logistics and supply chain technologies now under development. The most significant gains are being made where machine learning can contribute to solving complex constraint, cost and delivery problems companies face today. McKinsey predicts machine learning’s most significant contributions will be in providing supply chain operators with more significant insights into how supply chain performance can be improved, anticipating anomalies in logistics costs and performance before they occur. Machine learning is also providing insights into where automation can deliver the most significant scale advantages. Source: McKinsey & Company, Automation in logistics: Big opportunity, bigger uncertainty, April 2019. By Ashutosh Dekhne, Greg Hastings, John Murnane, and Florian Neuhaus

  • The wide variation in data sets generated from the Internet of Things (IoT) sensors, telematics, intelligent transport systems, and traffic data have the potential to deliver the most value to improving supply chains by using machine learning. Applying machine learning algorithms and techniques to improve supply chains starts with data sets that have the greatest variety and variability in them. The most challenging issues supply chains face are often found in optimizing logistics, so materials needed to complete a production run arrive on time. Source: KPMG, Supply Chain Big Data Series Part 1

  • Machine learning shows the potential to reduce logistics costs by finding patterns in track-and-trace data captured using IoT-enabled sensors, contributing to $6M in annual savings. BCG recently looked at how a decentralized supply chain using track-and-trace applications could improve performance and reduce costs. They found that in a 30-node configuration when blockchain is used to share data in real-time across a supplier network, combined with better analytics insight, cost savings of $6M a year is achievable. Source: Boston Consulting Group, Pairing Blockchain with IoT to Cut Supply Chain Costs, December 18, 2018, by Zia Yusuf, Akash Bhatia, Usama Gill, Maciej Kranz, Michelle Fleury, and Anoop Nannra

  • Reducing forecast errors up to 50% is achievable using machine learning-based techniques. Lost sales due to products not being available are being reduced up to 65% through the use of machine learning-based planning and optimization techniques. Inventory reductions of 20 to 50% are also being achieved today when machine learning-based supply chain management systems are used. Source: Digital/McKinsey, Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (PDF, 52 pp., no opt-in).

  • DHL Research is finding that machine learning enables logistics and supply chain operations to optimize capacity utilization, improve customer experience, reduce risk, and create new business models. DHL’s research team continually tracks and evaluates the impact of emerging technologies on logistics and supply chain performance. They’re also predicting that AI will enable back-office automation, predictive operations, intelligent logistics assets, and new customer experience models. Source: DHL Trend Research, Logistics Trend Radar, Version 2018/2019 (PDF, 55 pp., no opt-in)

  • Detecting and acting on inconsistent supplier quality levels and deliveries using machine learning-based applications is an area manufacturers are investing in today. Based on conversations with North American-based mid-tier manufacturers, the second most significant growth barrier they’re facing today is suppliers’ lack of consistent quality and delivery performance. The greatest growth barrier is the lack of skilled labor available. Using machine learning and advanced analytics manufacturers can discover quickly who their best and worst suppliers are, and which production centers are most accurate in catching errors. Manufacturers are using dashboards much like the one below for applying machine learning to supplier quality, delivery and consistency challenges. Source: Microsoft, Supplier Quality Analysis sample for Power BI: Take a tour, 2018

  • Reducing risk and the potential for fraud, while improving the product and process quality based on insights gained from machine learning is forcing inspection’s inflection point across supply chains today. When inspections are automated using mobile technologies and results are uploaded in real-time to a secure cloud-based platform, machine learning algorithms can deliver insights that immediately reduce risks and the potential for fraud. Inspectorio is a machine learning startup to watch in this area. They’re tackling the many problems that a lack of inspection and supply chain visibility creates, focusing on how they can solve them immediately for brands and retailers. The graphic below explains their platform. Source: Forbes, How Machine Learning Improves Manufacturing Inspections, Product Quality & Supply Chain Visibility, January 23, 2019

  • Machine learning is making rapid gains in end-to-end supply chain visibility possible, providing predictive and prescriptive insights that are helping companies react faster than before. Combining multi-enterprise commerce networks for global trade and supply chain management with AI and machine learning platforms are revolutionizing supply chain end-to-end visibility. One of the early leaders in this area is Infor’s Control Center. Control Center combines data from the Infor GT Nexus Commerce Network, acquired by the company in September 2015, with Infor’s Coleman Artificial Intelligence (AI) Infor chose to name their AI platform after the inspiring physicist and mathematician Katherine Coleman Johnson, whose trail-blazing work helped NASA land on the moon. Be sure to pick up a copy of the book and see the movie Hidden Figures if you haven’t already to appreciate her and many other brilliant women mathematicians’ many contributions to space exploration. ChainLink Research provides an overview of Control Center in their article, How Infor is Helping to Realize Human Potential, and two screens from Control Center are shown below.

  • Machine learning is proving to be foundational for thwarting privileged credential abuse which is the leading cause of security breaches across global supply chains. By taking a least privilege access approach, organizations can minimize attack surfaces, improve audit and compliance visibility, and reduce risk, complexity, and the costs of operating a modern, hybrid enterprise. CIOs are solving the paradox of privileged credential abuse in their supply chains by knowing that even if a privileged user has entered the right credentials but the request comes in with risky context, then stronger verification is needed to permit access.  Zero Trust Privilege is emerging as a proven framework for thwarting privileged credential abuse by verifying who is requesting access, the context of the request, and the risk of the access environment.  Centrify is a leader in this area, with globally-recognized suppliers including Cisco, Intel, Microsoft, and Salesforce being current customers.  Source: Forbes, High-Tech’s Greatest Challenge Will Be Securing Supply Chains In 2019, November 28, 2018.
  • Capitalizing on machine learning to predict preventative maintenance for freight and logistics machinery based on IoT data is improving asset utilization and reducing operating costs. McKinsey found that predictive maintenance enhanced by machine learning allows for better prediction and avoidance of machine failure by combining data from the advanced Internet of Things (IoT) sensors and maintenance logs as well as external sources. Asset productivity increases of up to 20% are possible and overall maintenance costs may be reduced by up to 10%. Source: Digital/McKinsey, Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (PDF, 52 pp., no opt-in).

References

Accenture, Reinventing The Supply Chain With AI, 20 pp., PDF, no opt-in.

Bendoly, E. (2016). Fit, Bias, and Enacted Sensemaking in Data Visualization: Frameworks for Continuous Development in Operations and Supply Chain Management Analytics. Journal Of Business Logistics37(1), 6-17.

Boston Consulting Group, Pairing Blockchain with IoT to Cut Supply Chain Costs, December 18, 2018, by Zia Yusuf, Akash Bhatia, Usama Gill, Maciej Kranz, Michelle Fleury, and Anoop Nannra

Machine Learning Engineer Is The Best Job In The U.S. According To Indeed

  • Machine Learning Engineer job openings grew 344% between 2015 to 2018, and have an average base salary of $146,085.
  • At $158,303, Computer Vision Engineers earn among the highest salaries in tech
  • The average base salary of the 25 best jobs in the U.S. according to Indeed is $104,825, and the median base salary is $99,007.
  • Agile Coach is the highest paying job with an average base salary of $161,377.
  • 9 of the top 25 jobs in the U.S. this year are in tech fields according to Indeed.
  • Five jobs are heavily dependent on applicants’ Artificial Intelligence (AI) skills and expertise.

These and many other insights are from this Indeed’s The Best Jobs in the U.S.: 2019 study released this week. Indeed defined the best jobs as those experiencing the fastest growth measured by the increase in job postings between 2015 and 2018, in conjunction with those offering the highest pay using a baseline salary of $75,000. Indeed’s best jobs of 2019’s data set is available here in Microsoft Excel.

Key insights from Indeed’s ranking of the best jobs of 2019 include the following:

  • At $158,303, Computer Vision Engineers earn among the highest salaries in tech according to Indeed, followed Machine Learning Engineers with a base salary of $146,085. The average base pay of the nine tech-related jobs that made Indeed’s list is $122,761, above the median salary of $99,007 for the entire group of the top 25 jobs. Indeed’s top 25 jobs for 2019 are illustrated below in descending salary order with the median salary providing a benchmark across the group. Please click on the graphic to expand for easier reading.

  • Three of the top 10 fastest growing jobs as measured by percentage growth in the number of job postings are in tech. From 2015 to 2018, job postings for Machine Learning Engineers grew 344%, followed by Full-stack developers (206%) and Salesforce developers (129%). In aggregate, all nine technology-related job postings increased by 146% between 2015 and 2018. The graphic below illustrates the percentage of growth in the number of postings between 2015 and 2018. Please click on the graphic to expand for easier reading.

  • Comparing average base salary to percentage growth in job postings underscores the exceptionally high demand for Machine Learning Engineers in 2019. Technical professionals with machine learning expertise today are in an excellent position to bargain for the average base salary of at least $146,085 or more. Full-stack developers and Salesforce developers are in such high demand, technical professionals with skills on these areas combined with experience can command a higher salary than the average base salary. The following graphic compares the average base salary to percentage growth in job postings for the years 2015 – 2018. Please click on the graphic to expand for easier reading.

%d bloggers like this: