Skip to content

Posts from the ‘Artificial Intelligence’ Category

The Top 20 Machine Learning Startups To Watch In 2021

.
  • There are a record number of 9,977 machine learning startups and companies in Crunchbase today, an 8.2% increase over the 9,216 startups listed in 2020 and a 14.6% increase over the 8,705 listed in 2019.
  • Artificial Intelligence (A.I.) and machine learning (ML)-related companies received a record $27.6 billion in funding in 2020, according to Crunchbase. 
  • Of those A.I. and machine learning startups receiving funding since January 1, 2020, 62% are seed rounds, 31% early-stage venture rounds and 6.7% late-stage venture capital-funded rounds.
  • A.I. and machine learning startups’ median funding round was $4.4 million and the average was $29.8 million in 2020, according to Crunchbase.

Throughout 2020, venture capital firms continued expanding into new global markets, with London, New York, Tel Aviv, Toronto, Boston, Seattle and Singapore startups receiving increased funding. Out of the 79 most popular A.I. & ML startup locations, 15 are in the San Francisco Bay Area, making that region home to 19% of startups who received funding in the last year. Israel’s Tel Aviv region has 37 startups who received venture funding over the last year, including those launched in Herzliya, a region of the city known for its robust startup and entrepreneurial culture.  

The following graphic compares the top 10 most popular locations for A.I. & ML startups globally based on Crunchbase data as of today:

Top 20 Machine Learning Startups To Watch In 2021

Augury – Augury combines real-time monitoring data from production machinery with AI and machine learning algorithms to determine machine health, asset performance management (APM) and predictive maintenance (PdM) to provide manufacturing companies with new insights into their operations. The digital machine health technology that the company offers can listen to the machine, analyze the data and catch any malfunctions before they arise. This enables customers to adjust their maintenance and manufacturing processes based on actual machine conditions. The platform is in use with HVAC, industrial factories and commercial facilities.

Alation – Alation is credited with pioneering the data catalog market and is well-respected in the financial services community for its use of A.I. to interpret and present data for analysis. Alation has also set a quick pace to evolving its platform to include data search & discovery, data governance, data stewardship, analytics and digital transformation. With its Behavioral Analysis Engine, inbuilt collaboration capabilities and open interfaces, Alation combines machine learning with human insight to successfully tackle data and metadata management challenges. More than 200 enterprises are using Alation’s platform today, including AbbVie, American Family Insurance, Cisco, Exelon, Finnair, Munich Re, New Balance, Pfizer, Scandinavian Airlines and U.S. Foods. Headquartered in Silicon Valley, Alation is backed by leading venture capitalists including Costanoa, Data Collective, Icon, Sapphire and Salesforce Ventures.

Algorithmia – Algorithmia’s expertise is in machine learning operations (MLOps) and helping customers deliver ML models to production with enterprise-grade security and governance. Algorithmia automates ML deployment, provides tooling flexibility, enables collaboration between operations and development and leverages existing SDLC and CI/CD practices. Over 110,000 engineers and data scientists have used Algorithmia’s platform to date, including the United Nations, government intelligence agencies and Fortune 500 companies.

Avora – Avora is noteworthy for its augmented analytics platform, making in-depth data analysis intuitively as easy as performing web searches. The company’s unique technology hides complexity, empowering non-technical users to run and share their reports easily. By eliminating the limitations of existing analytics, reducing data preparation and discovery time by 50-80% and accelerating time to insight, Avora uses ML to streamline business decision-making. Headquartered in London with offices in New York and Romania, Avora helps accelerate decision making and productivity for customers across various industries and markets, including Retail, Financial Services, Advertising, Supply Chain and Media and Entertainment.

Boast.ai – Focused on helping companies in the U.S. and Canada recover their R&D costs from respective federal governments, Boast.ai enables engineers and accountants to gain tax credits using AI-based tools. Some of the tax programs Boast.ai works with include US R&D Tax Credits, Scientific Research and Experimental Development (SR&ED) and Interactive Digital Media Tax Credits (IDMTC). The startup has offices in San Francisco, Vancouver and Calgary.

ClosedLoop.ai – An Austin, Texas-based startup, ClosedLoop.ai has created one of the healthcare industry’s first data science platforms that streamline patient experiences while improving healthcare providers’ profitability.  Their machine learning automation platform and a catalog of pre-built predictive and prescriptive models can be customized and extended based on a healthcare provider’s unique population or client base needs. Examples of their technology applications include predicting admissions/readmissions, predicting total utilization & total risk, reducing out-of-network utilization, avoiding appointment no-shows, predicting chronic disease onset or progression and improving clinical documentation and reimbursement. The Harvard Business School, through its Kraft Precision Medicine Accelerator, recently named ClosedLoop.ai as one of the fastest accelerating companies in its Real World Data Analytics Landscapes report.

Databand – A Tel Aviv-based startup that provides a software platform for agile machine learning development, Databand was founded in 2018 by Evgeny Shulman, Joshua Benamram and Victor Shafran. Data engineering teams are responsible for managing a wide suite of powerful tools but lack the utilities they need to ensure their ops are running properly. Databand fills this gap with a solution that enables teams to gain a global view of their data flows, make sure pipelines complete successfully and monitor resource consumption and costs. Databand fits natively in the modern data stack, plugging seamlessly into tools like Apache Airflow, Spark, Kubernetes and various ML offerings from the major cloud providers.

DataVisor – DataVisor’s approach to using AI for increasing fraud detection accuracy on a platform level is noteworthy. Using proprietary unsupervised machine learning algorithms, DataVisor enables organizations to detect and act on fast-evolving fraud patterns and prevent future attacks before they happen. Combining advanced analytics and an intelligence network of more than 4.2B global user accounts, DataVisor protects against financial and reputational damage across various industries, including financial services, marketplaces, e-commerce and social platforms. They’re one of the more fascinating cybersecurity startups using AI today.

Exceed.ai – What makes Exceed.ai noteworthy is how their AI-powered sales assistant platform automatically communicates the lead’s context and enables sales and marketing teams to scale their lead engagement and qualification efforts accordingly. Exceed.ai follows up with every lead and qualifies them quickly through two-way, automated conversations with prospects using natural language over chat and email. Sales reps are freed from performing error-prone and repetitive tasks, allowing them to focus on revenue-generating activities such as phone calls and demos with potential customers.

Indico – Indico is a Boston-based startup specializing in solving the formidable challenge of how dependent businesses are on unstructured content yet lack the frameworks, systems and tools to manage it effectively. Indico provides an enterprise-ready A.I. platform that organizes unstructured content while streamlining and automating back-office tasks. Indico is noteworthy given its track record of helping organizations automate manual, labor-intensive, document-based workflows.  Its breakthrough in solving these challenges is an approach known as transfer learning, which allows users to train machine learning models with orders of magnitude fewer data than required by traditional rule-based techniques. Indico enables enterprises to deploy A.I. to unstructured content challenges more effectively while eliminating many common barriers to A.I. & ML adoption.

LeadGenius – LeadGenius is noteworthy for its use of AI to provide personalized and actionable B2B lead information that helps its clients attain their global revenue growth goals. LeadGenius’s worldwide team of researchers uses proprietary technologies, including AI and ML-based techniques, to deliver customized lead generation, lead enrichment and data hygiene services in the format, methods and frequency defined by the customer. Their mission is to enable B2B sales and marketing organizations to connect with their prospects via unique and personalized data sets.

Netra – Netra is a Boston-based startup that began as part of MIT CSAIL research and has multiple issued and pending patents on its technology today. Netra is noteworthy for how advanced its video imagery scanning and text metadata interpretation are, ensuring safety and contextual awareness. Netra’s patented A.I. technology analyzes videos in real-time for contextual references to unsafe content, including deepfakes and potential cybersecurity threats. 

Particle –  Particle is an end-to-end IoT platform that combines software including A.I., hardware and connectivity to provide a wide range of organizations, from startups to enterprises, with the framework they need to launch IoT systems and networks successfully.  Particle customers include Jacuzzi, Continental Tires, Watsco, Shifted Energy, Anderson EV, Opti and others. Particle is venture-backed and has offices in San Francisco, Shenzhen, Las Vegas, Minneapolis and Boston. Particle’s developer community includes over 200,000 developers and engineers in more than 170 countries today.

RideVision – RideVision was founded in 2018 by motorcycle enthusiasts Uri Lavi and Lior Cohen. The company is revolutionizing the motorcycle-safety industry by harnessing the strength of artificial intelligence and image-recognition technology, ultimately providing riders with a much broader awareness of their surroundings, preventing collisions and enabling bikers to ride with full confidence that they are safe. RideVision’s latest round was $7 million in November of last year, bringing their total funding to $10 million in addition to a partnership with Continental AG.

Savvie – Savvie is an Oslo-based startup specializing in translating large volumes of data into concrete actions that bakery and café owners can utilize to improve their bottom line every day.  In doing so, we help food businesses make the right decisions to optimize their operations and increase profitability while reducing waste at its source. What’s noteworthy about this startup is how adept they are at fine-tuning ML algorithms to provide their clients with customized recommendations and real-time insights about their food and catering businesses.  Their ML-driven insights are especially valuable given how bakery and café owners are pivoting their business models in response to the pandemic.

SECURITI.ai – One of the most innovative startups in cybersecurity, combining AI and ML to secure sensitive data in multi-cloud and mixed platform environments, SECURITI.ai is a machine learning company to watch in 2021, especially if you are interested in cybersecurity.  Their AI-powered platform and systems enable organizations to discover potential breach risk areas across multi-cloud, SaaS and on-premise environments, protect it and automate all private systems, networks and infrastructure functions.

SkyHive – SkyHive is an artificial intelligence-based SaaS platform that aims to reskill enterprise workforces and communities. It develops and commercializes a methodology, Quantum Labor Analysis, to deliver real-time, skill-level insights into internal workforces and external labor markets, identify future and emerging skills and facilitate individual-and company-level reskilling. SkyHive is industry-agnostic and supporting enterprise and government customers globally with a mission to reduce unemployment and underemployment. Sean Hinton founded the technology company in Vancouver, British Columbia, in 2017.

Stravito – Stravito is an A.I. startup that’s combining machine learning, Natural Language Processing (NLP) and Search to help organizations find and get more value out of the many market research reports, competitive, industry, market share, financial analysis and market projection analyses they have by making them searchable. Thor Olof Philogène and Sarah Lee founded the company in 2017, who identified an opportunity to help companies be more productive, getting greater value from their market research investments. Thor Olof Philogène and Andreas Lee were co-founders of NORM, a research agency where both worked for 15 years serving multinational brands, eventually selling the company to IPSOS. While at NORM, Anders and Andreas were receiving repeated calls from global clients that had bought research from them but could not find it internally and ended up calling them asking for a copy. Today the startup has Carlsberg, Comcast, Colruyt Group, Danone, Electrolux, Pepsi Lipton and others. Stravito has offices in Stockholm (H.Q.), Malmö and Amsterdam.

Verta.ai – Verta is a startup dedicated to solving the complex problems of managing machine learning model versions and providing a platform to launch models into production. Founded by Dr. Manasi Vartak, Ph.D., a graduate of MIT, who led a team of graduate and undergraduate students at MIT CSAIL to build ModelDB, Verta is based on their work define the first open-source system for managing machine learning models. Her dissertation, Infrastructure for model management and model diagnosis, proposes ModelDB, a system to track ML-based workflows’ provenance and performance. In August of this year, Verta received a $10 million Series A round led by Intel Capital and General Catalyst, who also led its $1.7 million seed round. For additional details on Verta.ai, please see How Startup Verta Helps Enterprises Get Machine Learning Right. The Verta MLOps platform launch webinar provides a comprehensive overview of the platform and how it’s been designed to streamline machine learning models into production:

V7 – V7 allows vision-based A.I. systems to learn continuously from training data with minimal human supervision. The London-based startup emerged out of stealth in August 2018 to reveal V7 Darwin, an image labeling platform to create training data for computer vision projects with little or no human involvement necessary. V7 specializes in healthcare, life sciences, manufacturing, autonomous driving, agri-tech, sporting clients like Merck, GE Healthcare and Toyota. V7 Darwin launched at CVPR 2019 in Long Beach, CA. Within its first year, it has semi-automatically annotated over 1,000 image and video segmentation datasets. V7 Neurons is a series of pre-trained image recognition applications for industry use. The following video explains how V7 Darwin works:

How FinancialForce Is Using AI To Fight Revenue Leakage

How FinancialForce Is Using AI To Fight Revenue Leakage

Bottom Line: Using AI to measure and predict revenue, costs, and margin across all Professional Services (PS) channels leads to greater accuracy in predicting payment risks, project overruns, and service forecasts, reducing revenue leakage in the process.

Professional Services’ Revenue Challenges Are Complex

Turning time into revenue and profits is one of the greatest challenges of running a Professional Services (PS) business. What makes it such a challenge is incomplete time tracking data and how quickly revenue leaks spring up, drain margins, and continue unnoticed for months. Examples of revenue leaks across a customers’ life cycles include the following:

  • Billing errors are caused by the booking and contract process not being in sync with each other leading to valuable time being wasted.
  • When products are bundled with services, there’s often confusion over recognizing each revenue source, when, and by which PS metric.
  • Inconsistent, inaccurate project cost estimates and actual activity lead to inaccurate forecasting, delaying the project close and the potential for bad debt write-offs and high Days Sales Outstanding (DSO).
  • Revenue leakage gains momentum and drains margins when the following happens:
    • Un-forecasted delays and timescale creep
    • Reduced utilization rates across each key resource required for the project to be completed
    • Invoice and billing errors that result in invoice disputes that turn into high DSOs & write-offs
    • Incorrect pricing versus the costs of sales & service often leads to customer churn.
    • Revenue leakage gains momentum as each of these factors further drains margin

Adding up all these examples and many more can easily add up to 20-30% of actual lost solution and services margin. In many ways, it’s like death by a thousand small cuts. The following graphic provides examples across the customer lifecycle:

How FinancialForce Is Using AI To Fight Revenue Leakage

Why Professional Services Are Especially Vulnerable To Revenue Leakage 

Selling projects and the promise of their outcomes in the future create a unique series of challenges for PS organizations when it comes to controlling revenue leakage. It often starts with inaccurately scoping a project too aggressively to win the deal, only to determine the complexity of tasks originally budgeted for will take 10 – 30% longer or more. Disconnects on project scope are unfortunately too common, turning small revenue leaks into major ones and the potential of long Days Sales Outstanding (DSO) on invoices. When revenue leaks get ingrained in a project’s structure, they continue to cascade into each subsequent phase, growing and costing more than expected.

The SPI 2021 Professional Services Maturity™ Benchmark Service published by Services Performance Insight, LLC in February of this year provides insights into the hidden costs and prevalence of revenue leakage. The following table illustrates how organizations with high levels of revenue leakage also perform badly against other key metrics, including client referencability. The more revenue leakage an organization experiences, the more billable utilization drops, on-time project deliveries become worse, and executive real-time visibility becomes poorer.

How FinancialForce Is Using AI To Fight Revenue Leakage

How FinancialForce Is Using AI To Fight Revenue Leakage

It’s noteworthy that FinancialForce is now on its 12th consecutive product release that includes Salesforce Einstein, and many customers, including Five9, are using AI to manage revenue leakage across their PS business. Throughout the pandemic, the FinancialForce DevOps, product management, and software quality teams have been a machine, creating rich new releases on schedule and with improved AI functionality based on Einstein. The 12th release includes prebuilt data models, lenses, dashboards, and reports.

Andy Campbell, Solution Evangelist at FinancialForce, says that “FinancialForce customers have access to best practices to minimize revenue leakage by scoping and selling the right product and services mix to allocating the optimal range and amount of services personnel and finally billing, collecting and recognizing the right amount of revenue for services provided.” Andy continued, saying that recent dashboards have been built for resource managers to automate demand and capacity planning and service revenue forecasting and assist financial analysts in managing deferred revenue and revenue leakage.

By successfully integrating Einstein into their ERP system for PS organizations, FinancialForce helps clients find new ways to reduce revenue leakage and preserve margin. Relying on AI-based insights for each phase of a PS engagement delivered a 20% increase in Customer Lifetime Value according to a FinancialForce customer. And by combining FinancialForce and Salesforce, customers see an increased bid:win ratio of 10% or more. The following graphic illustrates how combining the capabilities of Einstein’s AI platform with FinancialForce delivers results.

How FinancialForce Is Using AI To Fight Revenue Leakage

Conclusion

FinancialForce’s model building in Einstein is based on ten years of structured and unstructured data, aggregated and anonymized, then used for in-tuning AI models. FinancialForce says these models are used as starting points or templates for AI-based products and workflows, including predict to pay.  Salesforce has also done the same for its Sales Cloud Analytics and Service Cloud Analytics. In both cases, Salesforce and FinancialForce customers benefit from best practices and recommendations based on decades of data, which should be particularly interesting considering the “black swan” nature of 2020 data for most of their customers.

76% Of Enterprises Prioritize AI & Machine Learning In 2021 IT Budgets

  • 43% of enterprises say their AI and Machine Learning (ML) initiatives matter “more than we thought,” with one in four saying AI and ML should have been their top priority sooner.
  • 50% of enterprises plan to spend more on AI and ML this year, with 20% saying they will be significantly increasing their budgets.
  • 56% of all enterprises rank governance, security and auditability issues as their highest-priority concerns today.
  • In just over a third of enterprises surveyed (38%), data scientists spend more than 50% of their time on model deployment.   

Enterprises accelerated their adoption of AI and machine learning in 2020, concentrating on those initiatives that deliver revenue growth and cost reduction. Consistent with many other surveys of enterprises’ AI and machine learning accelerating projects last year, Algorithmia’s third annual survey, 2021 Enterprise Trends in Machine Learning finds enterprises expanding into a wider range of applications starting with process automation and customer experience. Based on interviews with 403 business leaders and practitioners who have insights into their company’s machine learning efforts, the study represents a random sampling of industries across a spectrum of machine learning maturity levels. Algorithmia chose to limit the survey to only those from enterprises with $100M or more in revenue. Please see page 34 of the study for additional details regarding the methodology.   

Key insights from the research include the following:

  • 76% of enterprises prioritize AI and machine learning (ML) over other IT initiatives in 2021. Six in ten (64%) say AI and ML initiatives’ priorities have increased relative to other IT priorities in the last twelve months. Algorithmia’s survey from last summer found that enterprises began doubling down on AI & ML spending last year. The pandemic created a new sense of urgency regarding getting AI and ML projects completed, a key point made by CIOs across the financial services and tech sectors last year during interviews for comparable research studies.
76% Of Enterprises Prioritize AI & Machine Learning In 2021 IT Budgets
Algorithmia’s third annual survey, 2021 Enterprise Trends in Machine Learning
  • 83% of enterprises have increased their budgets for AI and machine learning year-over-year from 2019 to 2020. 20% of enterprises increased their budget by over 50% between 2019 and 2020. According to MMC Ventures’ The State of AI Divergence Study, one in ten enterprises now uses ten or more AI applications with chatbots, process optimization and fraud analysis leading all categories. A recent Salesforce Research report, Enterprise Technology Trends, found that 83% of IT leaders say AI & ML is transforming customer engagement and 69% say it is transforming their business. The following compares year-over-year AI and ML budget changes between FY 2018 – 2019 and FY 2019 – 20.
76% Of Enterprises Prioritize AI & Machine Learning In 2021 IT Budgets
Algorithmia’s third annual survey, 2021 Enterprise Trends in Machine Learning
76% Of Enterprises Prioritize AI & Machine Learning In 2021 IT Budgets
Algorithmia’s third annual survey, 2021 Enterprise Trends in Machine Learning
  • Improving customer experiences to drive greater revenue growth and automating processes to reduce costs are the two most popular use cases or application areas for AI and ML in enterprises today. It’s noteworthy that seven of the top 20 use cases are customer-centric, nearly half of all use cases tracked in Algorithmia’s survey.  46% of enterprises are using AI & ML to combat fraud, which will most likely grow given the growth and severity of breaches, including the SolarWinds cyberattack. Capgemini’s recent study of AI adoption in cybersecurity found network, data and endpoint security are the three leading use cases of AI in cybersecurity today, with each predicted to get more funding in 2021, according to CISOs interviewed for the report.
76% Of Enterprises Prioritize AI & Machine Learning In 2021 IT Budgets
Algorithmia’s third annual survey, 2021 Enterprise Trends in Machine Learning
  • AI and ML business cases that provide greater customer revenue growth, reduced costs and greater financial visibility have the highest priority of being funded inside any enterprise today. The combination of improving customer experiences, automating processes (to reduce costs) and generating financial insights (for greater financial visibility) is the ideal combination for getting a proof of concept started for an AI or ML project. The proliferation of AI and ML use cases shown in the graphic below is attributable to how each contributes to enterprises achieving a tangible, positive ROI by combining them to solve specific business problems.
76% Of Enterprises Prioritize AI & Machine Learning In 2021 IT Budgets
Algorithmia’s third annual survey, 2021 Enterprise Trends in Machine Learning

Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021

Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
  • According to Burning Glass Technologies, the two tech job skills paying the highest salary premiums today and in 2021 are IT Automation ($24,969) and AI & Machine Learning ($14,175).
  • The average salary premiums for the most in-demand tech skills range from $4,204 to nearly $25,000.
  • Startups valued at $1 billion or more are 33% more likely to prioritize one or several top ten tech job skills in their new hire plans versus their legacy Fortune 100-based competitors or colleagues.

These and many other fascinating insights are from Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech, Burning Glass Technologies’ latest research study published earlier this month. Their latest study provides pragmatic, useful insights for tech professionals interested in furthering their careers and earning potential. Burning Glass Technologies is a leading job market analytics provider that delivers job market analytics that empowers employers, workers and educators to make data-driven decisions. 

Using AI To Find The Most Valuable Job Skills

Using artificial intelligence-based technologies they’ve developed, Burning Glass Technologies analyzed over 17,000 unique skills demanded across their database of over one billion historical job listings. The study aggregates then define disruptive skill clusters as those skill groups projected to grow the fastest, are most undersupplied and provide the highest value. For additional details regarding their methodology, please see page 8 of the report.

The research study is noteworthy because it explains how essential acquiring skills is to translating new technologies’ benefits into business value. They’ve also taken their analysis a step further, providing technical professionals with additional insights they need to plan their personal development and careers.

Key takeaways from their analysis include the following:

  • IT Automation expertise can earn technical professionals a $24,969 salary premium, the most lucrative of all tech job skills to have in 2021. Burning Glass Technologies defines IT Automation as the skills related to automating and orchestrating digital processes and workflows. Six of the ten job skills are marketable enough to drive technical professionals’ salaries above $10,000 a year. At an average salary uplift of $8,851, proactive security (cybersecurity) job skills’ market value seems low. Future surveys in 2021 will most likely reflect the impact of the SolarWinds breach on demand for this skill set. The following graphic compares the average salary premium by tech job skill area.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  • Software Dev. Methodologies (DevOps) expertise is the most marketable going into 2021, with 634,600 open positions available in North America based on Burning Glass Technologies’ analysis. Employers initiated 1,714,483 job postings requesting at least one disruptive skill area between December 2019 and November 2020. With each skill predicted to grow at least 17%, technical professionals have several lucrative options for their personal and professional development plans. The following graphic compares job openings by skill areas for the time frame of the study:
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  • Quantum Computing, Connected Technologies, Fintech and AI & Machine Learning expertise are predicted to be the fastest-growing tech job skills in 2021 and beyond. Demand for technical professionals skilled in building and optimizing quantum computers and their applications will be in high demand for the next five years based on the study’s findings. Connected Technologies refers to skills related to the Internet of Things and connected physical tools and the telecommunications infrastructure needed to enable them. Fintech skills are related to technologies, including blockchain and others, that make financial transactions more efficient and secure. The following graphic compares the top ten tech job skills predicted to grow the fastest in 2021.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  • AI & Machine Learning, Cloud Technologies, Parallel Computing and Proactive Security (Cybersecurity) are the most distributed across industries, translating into more diverse job opportunities for technical professionals with these skills. Professional Services leads all industries in demand for nine of the ten tech job skills, except Parallel Computing, the most in-demand skill in Manufacturing. Factors contributing to Professional Services leading all industries in demand for technical job skills include the following factors. First, their business models need to continue pivoting fast to stabilize during the pandemic. Second, better risk and compliance controls of remote operations are urgently needed. Third, better visibility into services costs across all systems to ensure financial reporting accuracy is a must-have, according to the CFOs I spoke with regarding the survey results. The following graphic compares demand for tech skills by industry sector.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  • Demand for AI and Machine Learning skills is growing at a 71% compound annual growth rate through 2025, with 197,810 open positions today. Technical professionals with job skills in this area see salary premiums of $14,175. Top positions include Data Scientist, Software Developer, Network Engineer, Network Architect, Data Engineer and Senior Data Scientist.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  •  Positions requiring IT Automation job skills are predicted to grow 59% over the next five years and have 282,380 positions open today. Besides being the most lucrative job skillset to have, IT Automation job skills lead to positions including Software Developer, DevOps Engineer, Senior Software Developer, Systems Engineer and Java Developer or Engineer.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies

What’s New In Gartner’s Hype Cycle For AI, 2020

What's New In Gartner's Hype Cycle For AI, 2020
AI is starting to deliver on its potential and its benefits for businesses are becoming a reality.

  • 47% of artificial intelligence (AI) investments were unchanged since the start of the pandemic and 30% of organizations plan to increase their AI investments, according to a recent Gartner poll.
  • 30% of CEOs own AI initiatives in their organizations and regularly redefine resources, reporting structures and systems to ensure success.
  • AI projects continue to accelerate this year in healthcare, bioscience, manufacturing, financial services and supply chain sectors despite greater economic & social uncertainty.
  • Five new technology categories are included in this year’s Hype Cycle for AI, including small data, generative AI, composite AI, responsible AI and things as customers.

These and many other new insights are from the Gartner Hype Cycle for Artificial Intelligence, 2020, published on July 27th of this year and provided in the recent article, 2 Megatrends Dominate the Gartner Hype Cycle for Artificial Intelligence, 2020.  Two dominant themes emerge from the combination of 30 diverse AI technologies in this year’s Hype Cycle. The first theme is the democratization or broader adoption of AI across organizations. The greater the democratization of AI, the greater the importance of developers and DevOps to create enterprise-grade applications. The second theme is the industrialization of AI platforms. Reusability, scalability, safety and responsible use of AI and AI governance are the catalysts contributing to the second theme.  The Gartner Hype Cycle for Artificial Intelligence, 2020, is shown below:

What's New In Gartner's Hype Cycle For AI, 2020
Smarter with Gartner, 2 Megatrends Dominate the Gartner Hype Cycle for Artificial Intelligence, 2020.

Details Of What’s New In Gartner’s Hype Cycle for Artificial Intelligence, 2020

  • Chatbots are projected to see over a 100% increase in their adoption rates in the next two to five years and are the leading AI use cases in enterprises today.  Gartner revised the bots’ penetration rate from a range of 5% to 20% last year to 20% to 50% this year. Gartner points to chatbot’s successful adoption as the face of AI today and the technology’s contributions to streamlining automated, touchless customer interactions aimed at keeping customers and employees safe. Bot vendors to watch include Amazon Web Services (AWS), Cognigy, Google, IBM, Microsoft, NTT DOCOMO, Oracle, Rasa and Rulai.
  • GPU Accelerators are the nearest-term technology to mainstream adoption and are predicted to deliver a high level of benefit according to Gartner’s’ Priority Matrix for AI, 2020. Gartner predicts GPU Accelerators will see a 100% improvement in adoption in two to five years, increasing from 5% to 20% adoption last year to 20% to 50% this year. Gartner advises its clients that GPU-accelerated Computing can deliver extreme performance for highly parallel compute-intensive workloads in HPC, DNN training and inferencing. GPU computing is also available as a cloud service. According to the Hype Cycle, it may be economical for applications where utilization is low, but the urgency of completion is high.
  • AI-based minimum viable products and accelerated AI development cycles are replacing pilot projects due to the pandemic across Gartner’s client base. Before the pandemic, pilot projects’ success or failure was, for the most part, dependent on if a project had an executive sponsor and how much influence they had. Gartner clients are wisely moving to minimum viable product and accelerating AI development to get results quickly in the pandemic. Gartner recommends projects involving Natural Language Processing (NLP), machine learning, chatbots and computer vision to be prioritized above other AI initiatives. They’re also recommending organizations look at insight engines’ potential to deliver value across a business.
  • Artificial General Intelligence (AGI) lacks commercial viability today and organizations need to focus instead on more narrowly focused AI use cases to get results for their business. Gartner warns there’s a lot of hype surrounding AGI and organizations would be best to ignore vendors’ claims of having commercial-grade products or platforms ready today with this technology. A better AI deployment strategy is to consider the full scope of technologies on the Hype Cycle and choose those delivering proven financial value to the organizations adopting them.
  • Small Data is now a category in the Hype Cycle for AI for the first time. Gartner defines this technology as a series of techniques that enable organizations to manage production models that are more resilient and adapt to major world events like the pandemic or future disruptions. These techniques are ideal for AI problems where there are no big datasets available.
  • Generative AI is the second new technology category added to this year’s Hype Cycle for the first time. It’s defined as various machine learning (ML) methods that learn a representation of artifacts from the data and generate brand-new, completely original, realistic artifacts that preserve a likeness to the training data, not repeat it.
  • Gartner sees potential for Composite AI helping its enterprise clients and has included it as the third new category in this year’s Hype Cycle. Composite AI refers to the combined application of different AI techniques to improve learning efficiency, increase the level of “common sense,” and ultimately to much more efficiently solve a wider range of business problems.
  • Concentrating on the ethical and social aspects of AI, Gartner recently defined the category Responsible AI as an umbrella term that’s included as the fourth category in the Hype Cycle for AI. Responsible AI is defined as a strategic term that encompasses the many aspects of making the right business and ethical choices when adopting AI that organizations often address independently. These include business and societal value, risk, trust, transparency, fairness, bias mitigation, explainability, accountability, safety, privacy and regulatory compliance.
  • The exponential gains in accuracy, price/performance, low power consumption and Internet of Things sensors that collect AI model data have to lead to a new category called Things as Customers, as the fifth new category this year.  Gartner defines things as Customers as a smart device or machine or that obtains goods or services in exchange for payment. Examples include virtual personal assistants, smart appliances, connected cars and IoT-enabled factory equipment.
  • Thirteen technologies have either been removed, re-classified, or moved to other Hype Cycles compared to last year.  Gartner has chosen to remove VPA-enabled wireless speakers from all Hype Cycles this year. AI developer toolkits are now part of the AI developer and teaching kits category. AI PaaS is now part of AI cloud services. Gartner chose to move AI-related C&SI services, AutoML, Explainable AI (also now part of the Responsible AI category in 2020), graph analytics and Reinforcement Learning to the Hype Cycle for Data Science and Machine Learning, 2020. Conversational User Interfaces, Speech Recognition and Virtual Assistants are now part of the Hype Cycle for Natural Language Technologies, 2020. Gartner has also chosen to move Quantum computing to the Hype Cycle for Compute Infrastructure, 2020. Robotic process automation software is now removed from the Hype Cycle for AI, as Gartner mentions the technology in several other Hype Cycles.

How An AI Platform Is Matching Employees And Opportunities

How An AI Platform Is Matching Employees And Opportunities

Instead of relying on data-driven signals of past accomplishments, Eightfold.ai is using AI to discover the innate capabilities of people and matching them to new opportunities in their own companies.

Bottom Line: Eightfold.ai’s innovative approach of combining their own AI and virtual hackathons to create and launch new additions to their Project Marketplace rapidly is a model enterprises need to consider emulating.

Eightfold.ai was founded with the mission that there is a right career for everyone in the world. Since its founding in 2016, Eightfold.ai’s Talent Intelligence Platform continues to see rapid global growth, attracting customers across four continents and 25 countries, supporting 15 languages with users in 110 countries. Their Talent Intelligence Platform is built to assist enterprises with Talent Acquisition and Management holistically.

What’s noteworthy about Eightfold.ai’s approach is how they have successfully created a platform that aggregates all available data on people across an enterprise – from applicants to alumni – to create a comprehensive Talent Network. Instead of relying on data-driven signals of past accomplishments, Eightfold.ai is using AI to discover the innate capabilities of people and matching them to new opportunities in their own companies. Eightfold’s AI and machine learning algorithms are continuously learning from enterprise and individual performance to better predict role, performance and career options for employees based on capabilities.

How Eightfold Sets A Quick Pace Innovating Their Marketplace

Recently Eightfold.ai announced Project Marketplace, an AI-based solution for enterprises that align employees seeking new opportunities and companies’ need to reskill and upskill their employees with capabilities that line up well with new business imperatives. Eightfold wanted to provide employees with opportunities to gain new skills through experiential learning, network with their colleagues, join project teams and also attain the satisfaction of helping flatten the unemployment curve outside. Project Marketplace helps employers find hidden talent, improve retention strategies and gain new knowledge of who has specific capabilities and skills. The following is a screen from the Marketplace that provides employees the flexibility of browsing all projects their unique capabilities qualify them for:

How An AI Platform Is Matching Employees And Opportunities

Employees select a project of interest and are immediately shown how strong of a match they are with the open position. Eightfold provides insights into relevant skills that an employee already has, why they are a strong match and the rest of the project team members – often a carrot in itself. Keeping focused on expanding employee’s capabilities, Eightfold also provides guidance of which skills an employee will learn. The following is an example of what an open project positions looks like:

How An AI Platform Is Matching Employees And Opportunities

How An AI Platform Is Matching Employees And Opportunities

Employee applicants can also view all the projects they currently have open from the My Projects view shown below:

How An AI Platform Is Matching Employees And Opportunities

Project Marketplace is the win/win every employee has yearned for as they start to feel less challenged in their current position and start looking for a new one, often outside their companies. I recently spoke with Ashutosh Garg, CEO and Co-Founder and Kamal Ahluwalia, Eightfold’s President, to see how they successfully ran a virtual hackathon across three continents to keep the Marketplace platform fresh with new features and responsive to the market.

How to Run A Virtual Hackathon

Starting with the hackathon, Eightfold relied on its own Talent Intelligence Platform to define the teams across all three continents, based on their employees’ combined mix of capabilities. Ashutosh, Kamal and the senior management team defined three goals of the hackathon:

  1. Solve problems customers are asking about with solutions that are not on the roadmap yet.
  2. Accelerate time to value for customers with new approaches no one has thought of before.
  3. Find new features and unique strengths that further strengthen the company’s mission of finding the right career for everyone in the world.

It’s fascinating to see how AI, cybersecurity and revenue management software companies continue to innovate at a fast pace delivering complex apps with everyone being remote. I asked Ashutosh how he and his management team approached the challenge of having a hackathon spanning three continents deliver results. Here’s what I learned from our discussion and these lessons are directly applicable to any virtual hackathon today:

  1. Define the hackathon’s purpose clearly and link it to the company mission, explaining what’s at stake for customers, employees and the millions of people looking for work today – all served by the Talent Intelligence Platform broadening its base of features.
  2. Realize that what you are building during the hackathon will help set some employees free from stagnating skills allowing them to be more employable with their new capabilities.
  3. The hackathon is a chance to master new skills through experiential learning, further strengthening their capabilities as well. And often learning from some of the experts in the company by joining their teams.
  4. Reward risk-taking and new innovative ideas that initially appear to be edge cases, but can potentially be game changers for customers.

I’ve been interviewing CEOs from startups to established enterprise software companies about how they kept innovation alive during the lockdown. CEOs have mentioned agile development, extensive use of Slack channels and daily virtual stand-ups. Ashutosh Garg is the only one to mention how putting intrinsic motivation into practice, along with these core techniques, binds hackathon teams together fast. Dan Pink’s classic TED Talk, The Puzzle of Motivation, explains intrinsic motivators briefly and it’s clear they have implications on a hackathon succeeding or not.

Measuring Results Of the Hackathon

Within a weekend, Project Marketplace revealed several new rock stars amongst the Eightfold hackathon teams. Instead of doing side projects for people who had time on their hands, this Hackathon was about making Eightfold’s everyday projects better and faster. Their best Engineers and Services team members took a step back, re-looked at the current approaches and competed with each other to find better and innovative ways. And they all voted for the most popular projects and solutions – ultimate reward in gaining the respect of your peers. As well as the most “prolific coder” for those who couldn’t resist working on multiple teams.

Conclusion

Remote work is creating daunting challenges for individuals at home as well as for companies. Business models need to change and innovation cannot take a back seat while most companies have employees working from home for the foreseeable future. Running a hackathon during a global lockdown and making it deliver valuable new insights and features that benefit customers now is achievable as Eightfold’s track record shows. Project marketplace may prove to be a useful ally for employees and companies looking to stay true to their mission and help each other grow – even in a pandemic. This will create better job security, a culture of continuous learning, loyalty and more jobs. AI will change how we look at our work – and this is a great example of inspiring innovation.

 

How To Improve Channel Sales With AI-Based Knowledge Sharing Networks

How To Improve Channel Sales With AI-Based Knowledge Sharing Networks

Bottom Line: Knowledge-sharing networks have been improving supply chain collaboration for decades; it’s time to enhance them with AI and extend them to resellers to revolutionize channel selling with more insights.

The greater the accuracy and speed of supply chain-based data integration and knowledge, the greater the accuracy of custom product orders. Add to that the complexity of selling CPQ and product configurations through channels, and the value of using AI to improve knowledge sharing networks becomes a compelling business case.

Why Channels Need AI-Based Knowledge Sharing Networks Now

Automotive, consumer electronics, high tech, and industrial products manufacturers are combining IoT sensors, microcontrollers, and modular designs to sell channel-configurable smart vehicles and products. AI-based knowledge-sharing networks are crucial to the success of their next-generation products. Likewise, to sell to any of these manufacturers, suppliers need to be pursuing the same strategy. AI-based services, including Amazon Alexa, Microsoft Cortana, and Google Voice and others, rely on knowledge-sharing networks to collaborate with automotive supply chains and strengthen OEM partnerships. The following graphic reflects how successful Amazon’s Alexa Automotive OEM sales team is at using knowledge-sharing networks to gain design wins across their industry.

The following are a few of the many reasons why creating and continually fine-tuning an AI-based knowledge-sharing network is an evolving strategy worth paying attention to:

  • Supply chains are the primary source of knowledge that must permeate an organization’s structure and channels for the company to stay synchronized to broader market demands. For CPQ channel selling strategies to thrive, they need real-time pricing, availability, available-to-promise, and capable-to-promise data to create accurate, competitive quotes that win deals. The better the supplier collaboration across supply chains and with channel partners, the higher the probability of selling more. A landmark study of the Toyota Production System by Professors Jeffrey H Dyer & Kentaro Nobeoka found that Toyota suppliers value shared data more than cash, making knowledge sharing systems invaluable to them (Dyer, Nobeoka, 2000).
  • Smart manufacturing metrics also need to be contributing real-time data to knowledge sharing systems channel partners use, relying on AI to create quotes for products that can be built the fastest and are the most attractive to each customer. Combining manufacturing’s real-time monitoring data stream of ongoing order progress and production availability with supply chain pricing, availability, and quality data all integrated to a cloud-based CPQ platform gives channel partners what they need to close deals now. AI-based knowledge-sharing networks will link supply chains, manufacturing plants, and channel partners to create smart factories that drive more sales. According to a recent Capgemini study, manufacturers are planning to launch 40% more smart factories in the next five years, increasing their annual investments by 1.7 times compared to the previous three years, according to their recent Smart factories @ scale Capgemini survey. The following graphic illustrates the percentage growth of smart factories across key geographic regions, a key prerequisite for enabling AI-based knowledge-sharing networks with real-time production data:
  • By closing the data gaps between suppliers, manufacturing, and channels, AI-based knowledge-sharing networks give resellers the information they need to sell with greater insight. Amazon’s Alexa OEM marketing teams succeeded in getting the majority of design-in wins with automotive manufacturers designing their next-generation of vehicles with advanced electronics and AI features. The following graphic from Dr. Dyer’s and Nobeoka’s study defines the foundations of a knowledge-sharing network. Applying AI to a mature knowledge-sharing network creates a strong network effect where every new member of the network adds greater value.
  • Setting the foundation for an effective knowledge sharing network needs to start with platforms that have AI and machine learning designed in with structure that can flex for unique channel needs. There are several platforms capable of supporting AI-based knowledge-sharing networks available, each with its strengths and approach to adapting to supply chain, manufacturing, and channel needs. One of the more interesting frameworks not only uses AI and machine learning across its technology pillars but also takes into consideration that a company’s operating model needs to adjust to leverage a connected economy to adapt to changing customer needs. BMC’s Autonomous Digital Enterprise (ADE) is differentiated from many others in how it is designed to capitalize on AI and Machine Learning’s core strengths to create innovation ecosystems in a knowledge-sharing network. Knowledge-sharing networks thrive on continuous learning. It’s good to see major providers using adaptive and machine learning to strengthen their platforms, with BMC’s Automated Mainframe Intelligence (AMI) emerging as a leader. Their approach to using adaptive learning to maintain data quality during system state changes and link exceptions with machine learning to deliver root cause analysis is prescient of where continuous learning needs to go.  The following graphic explains the ADE’s structure.

Conclusion

Knowledge-sharing networks have proven very effective in improving supply chain collaboration, supplier quality, and removing barriers to better inventory management. The next step that’s needed is to extend knowledge-sharing networks to resellers and enable knowledge sharing applications that use AI to tailor product and service recommendations for every customer being quoted and sold to. Imagine resellers being able to create quotes based on the most buildable products that could be delivered in days to buying customers. That’s possible using a knowledge-sharing network. Amazon’s success with Alexa design wins shows how their use of knowledge-sharing systems helped to provide insights needed across automotive OEMs wanted to add voice-activated AI technology to their next-generation vehicles.

References

BMC, Maximizing the Value of Hybrid IT with Holistic Monitoring and AIOps (10 pp., PDF).

BMC Blogs, 2019 Gartner Market Guide for AIOps Platforms, December 2, 2019

Cai, S., Goh, M., De Souza, R., & Li, G. (2013). Knowledge sharing in collaborative supply chains: twin effects of trust and power. International journal of production Research51(7), 2060-2076.

Capgemini Research Institute, Smart factories @ scale: Seizing the trillion-dollar prize through efficiency by design and closed-loop operations, 2019.

Columbus, L, The 10 Most Valuable Metrics in Smart Manufacturing, Forbes, November 20, 2020

Jeffrey H Dyer, & Kentaro Nobeoka. (2000). Creating and managing a high-performance knowledge-sharing network: The Toyota case. Strategic Management Journal: Special Issue: Strategic Networks, 21(3), 345-367.

Myers, M. B., & Cheung, M. S. (2008). Sharing global supply chain knowledge. MIT Sloan Management Review49(4), 67.

Wang, C., & Hu, Q. (2020). Knowledge sharing in supply chain networks: Effects of collaborative innovation activities and capability on innovation performance. Technovation94, 102010.

 

Six Areas Where AI Is Improving Customer Experiences

Six Areas Where AI Is Improving Customer Experiences

Bottom Line: This year’s hard reset is amplifying how vital customer relationships are and how much potential AI has to find new ways to improve them.

  • 30% of customers will leave a brand and never come back because of a bad experience.
  • 27% of companies say improving their customer intelligence and data efforts are their highest priority when it comes to customer experience (CX).
  • By 2023, 30% of customer service organizations will deliver proactive customer services by using AI-enabled process orchestration and continuous intelligence, according to Gartner.
  • $13.9B was invested in CX-focused AI and $42.7B in CX-focused Big Data and analytics in 2019, with both expected to grow to $90B in 2022, according to IDC.

The hard reset every company is going through today is making senior management teams re-evaluate every line item and expense, especially in marketing. Spending on Customer Experience is getting re-evaluated as are supporting AI, analytics, business intelligence (BI), and machine learning projects and spending. Marketers able to quantify their contributions to revenue gains are succeeding the most at defending their budgets.

Fundamentals of CX Economics

Knowing if and by how much CX initiatives and strategies are paying off has been elusive. Fortunately, there are a variety of benchmarks and supporting methodologies being developed that contextualize the contribution of CX. KPMG’s recent study, How Much Is Customer Experience Worth? provides guidance in the areas of CX and its supporting economics. The following table provides an overview of key financial measures’ interrelationships with CX. The table below summarizes their findings:

The KPMG study also found that failing to meet customer expectations is two times more destructive than exceeding them. That’s a powerful argument for having AI and machine learning ingrained into CX company-wide. The following graphic quantifies the economic value of improving CX:

Six Areas Where AI Is Improving Customer Experiences

 

Where AI Is Improving CX

For AI projects to make it through the budgeting crucible that the COVID-19 pandemic has created, they’re going to have to show a contribution to revenue, cost reduction, and improved customer experiences in a contactless world. Add in the need for any CX strategy to be on a resilient, proven platform and the future of marketing comes into focus. Examples of platforms and customer-centric digital transformation networks that can help re-center an organization on data- and AI-driven customer insights include BMC’s Autonomous Digital Enterprise (ADE) and others. The framework is differentiated from many others in how it is designed to capitalize on AI and Machine Learning’s core strengths to improve every aspect of the customer (CX) and  employee experience (EX). BMC believes that providing employees with the digital resources they need to excel at their jobs also delivers excellent customer experiences.

Having worked my way through college in customer service roles, I can attest to how valuable having the right digital resources are for serving customers What I like about their framework is how they’re trying to go beyond just satisfying customers, they’re wanting to delight them. BMC calls this delivering a transcendent customer experience. From my collegiate career doing customer service, I recall the e-mails delighted customers sent to my bosses that would be posted along a wall in our offices. In customer service and customer experience, you get what you give. Having customer service reps like my younger self on the front line able to get resources and support they need to deliver more authentic and responsive support is key. I see BMC’s ADE doing the same by ensuring a scalable CX strategy that retains its authenticity even as response times shrink and customer volume increases.

The following are six ways AI can improve customer experiences:

  • Improving contactless personalized customer care is considered one of the most valuable areas where AI is improving customer experiences. These “need to do” marketing areas have the highest complexity and highest benefit. Marketers haven’t been putting as much emphasis on the “must do” areas of high benefit and low complexity, according to Capgemini’s analysis. These application areas include Chatbots and virtual assistants, reducing revenue churn, facial recognition and product and services recommendations. Source:  Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting. (PDF, 28 pp).

Six Areas Where AI Is Improving Customer Experiences

  • Anticipating and predicting how each customers’ preferences of where, when, and what they will buy will change and removing roadblocks well ahead of time for them. Reducing the friction customers face when they’re attempting to buy within a channel they’ve never purchased through before can’t be left to chance. Using augmented, predictive analytics to generate insights in real-time to customize the marketing mix for every individual Customer improves sales funnels, preserves margins, and can increase sales velocity.
  • Knowing which customer touchpoints are the most and least effective in improving CX and driving repurchase rates. Successfully using AI to improve CX needs to be based on data from all trackable channels that prospects and customers interact with. Digital touchpoints, including mobile app usage, social media, and website visits, all need to be aggregated into data sets ML algorithms to use to learn more about every Customer continually and anticipate which touchpoint is the most valuable to them and why. Knowing how touchpoints stack up from a customer’s point of view immediately says which channels are doing well and which need improvement.
  • Recruiting new customer segments by using CX improvements to gain them as prospects and then convert them to customers. AI and ML have been used for customer segmentation for years. Online retailers are using AI to identify which CX enhancements on their mobile apps, websites, and customer care systems are the most likely to attract new customers.
  • Retailers are combining personalization, AI-based pattern matching, and product-based recommendation engines in their mobile apps enabling shoppers to try on garments they’re interested in buying virtually. Machine learning excels at pattern recognition, and AI is well-suited for fine-tuning recommendation engines, which are together leading to a new generation of shopping apps where customers can virtually try on any garment. The app learns what shoppers most prefer and also evaluates image quality in real-time, and then recommends either purchase online or in a store. Source: Capgemini, Building The Retail Superstar: How unleashing AI across functions offers a multi-billion dollar opportunity.

Six Areas Where AI Is Improving Customer Experiences

  • Relying on AI to best understand customers and redefine IT and Operations Management infrastructure to support them is a true test of how customer-centric a business is. Digital transformation networks need to support every touchpoint of the customer experience. They must have AI and ML designed to anticipate customer needs and deliver the goods and services required at the right time, via the Customer’s preferred channel. BMC’s Autonomous Digital Enterprise Framework is a case in point. Source: Cognizant, The 2020 Customer Experience.

Six Areas Where AI Is Improving Customer Experiences

Additional Resources

4 Ways to Use Machine Learning in Marketing Automation, Medium, March 30, 2017

84 percent of B2C marketing organizations are implementing or expanding AI in 2018. Infographic. Amplero.

AI, Machine Learning, and their Application for Growth, Adelyn Zhou. SlideShare/LinkedIn. Feb. 8, 2018.

AI: The Next Generation of Marketing Driving Competitive Advantage throughout the Customer Life Cycle (PDF, 10 pp., no opt-in), Forrester, February 2017.

Artificial Intelligence for Marketers 2018: Finding Value beyond the Hype, eMarketer. (PDF, 20 pp., no opt-in). October 2017

Artificial Intelligence: The Next Frontier? McKinsey Global Institute (PDF, 80 pp., no opt-in)

Artificial Intelligence: The Ultimate Technological Disruption Ascends, Woodside Capital Partners. (PDF, 111 pp., no opt-in). January 2017.

AWS Announces Amazon Machine Learning Solutions Lab, Marketing Technology Insights

B2B Predictive Marketing Analytics Platforms: A Marketer’s Guide, (PDF, 36 pp., no opt-in) Marketing Land Research Report.

Campbell, C., Sands, S., Ferraro, C., Tsao, H. Y. J., & Mavrommatis, A. (2020). From data to action: How marketers can leverage AI. Business Horizons, 63(2), 227-243.

David Simchi-Levi

Earley, S. (2017). The Problem of Personalization: AI-Driven Analytics at Scale. IT Professional, 19(6), 74-80.

Four Use Cases of Machine Learning in Marketing, June 28, 2018, Martech Advisor,

Gacanin, H., & Wagner, M. (2019). Artificial intelligence paradigm for customer experience management in next-generation networks: Challenges and perspectives. IEEE Network, 33(2), 188-194.

Hildebrand, C., & Bergner, A. (2019). AI-Driven Sales Automation: Using Chatbots to Boost Sales. NIM Marketing Intelligence Review11(2), 36-41.

How Machine Learning Helps Sales Success (PDF, 12 pp., no opt-in) Cognizant

Inside Salesforce Einstein Artificial Intelligence A Look at Salesforce Einstein Capabilities, Use Cases and Challenges, Doug Henschen, Constellation Research, February 15, 2017

Kaczmarek, J., & Ryżko, D. (2009). Quantifying and optimising user experience: Adapting AI methodologies for Customer Experience Management.

KPMG, Customer first. Customer obsessed. Global Customer Experience Excellence report, 2019 (92 pp., PDF)

Machine Learning for Marketers (PDF, 91 pp., no opt-in) iPullRank

Machine Learning Marketing – Expert Consensus of 51 Executives and Startups, TechEmergence.

Marketing & Sales Big Data, Analytics, and the Future of Marketing & Sales, (PDF, 60 pp., no opt-in), McKinsey & Company.

OpenText, AI in customer experience improves loyalty and retention (11 pp., PDF)

Sizing the prize – What’s the real value of AI for your business and how can you capitalize? (PDF, 32 pp., no opt-in) Pw

The New Frontier of Price Optimization, MIT Technology Review. September 07, 2017.

The Power Of Customer Context, Forrester (PDF, 20 pp., no opt-in) Carlton A. Doty, April 14, 2014. Provided courtesy of Pegasystems.

Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting

Using machine learning for insurance pricing optimization, Google Cloud Big Data and Machine Learning Blog,

What Marketers Can Expect from AI in 2018, Jacob Shama. Mintigo. January 16, 2018.

10 Ways AI Is Going To Improve Fintech In 2020

Bottom Line: AI & machine learning will improve Fintech in 2020 by increasing the accuracy and personalization of payment, lending, and insurance services while also helping to discover new borrower pools.

Zest.ai’s 2020 Predictions For AI In Credit And Lending captures the gradual improvements I’ve also been seeing across Fintech, especially at the tech stack level. Fintech startups, enterprise software providers, and the investors backing them believe cloud-based payments, lending, and insurance apps are must-haves to drive future growth. Combined with Internet & public cloud infrastructure and mobile apps, Fintech is evolving into a fourth platform that provides embedded financial services to any business needing to subscribe to them, as Matt Harris of Bain Capital Ventures writes in Fintech: The Fourth Platform – Part Two. Embedded Fintech has the potential to deliver $3.6 trillion in market value, according to Bain’s estimates, surpassing the $3 trillion in value created by cloud and mobile platforms. Accenture’s recent survey of C-suite executives’ adoption and plans found that 84% of all executives believe they won’t achieve their growth objectives unless they scale AI, and 75% believe they risk going out of business in 5 years if they don’t. The need to improve payment, lending and insurance combined with customers’ mercurial preferences for how they use financial services are challenges that AI and machine learning (ML) are solving today.

How AI & Machine Learning Will Improve Fintech In 2020

Fintech’s traditional tech stacks weren’t designed to anticipate and act quickly on real-time market indicators and data; they are optimized for transaction speed and scale. What’s needed is a new tech stack that can flex and adapt to changing market and customer requirements in real-time. AI & machine learning are proving to be very effective at interpreting and recommending actions based on real-time data streams. They’re also improving customer experiences and reducing risk, two additional factors motivating lenders to upgrade their traditional tech stacks with proven new technologies.

The following are ten predictions of how AI will improve FinTech in 2020, thank you Zest.ai for your insights and sharing your team’s expertise on these:

  1. Zest predicts lenders will increase the use of ML as the way to grow into the no-file/thin-file segments, especially rising Gen Zers with little to no credit history. Traditional tech stacks make it difficult to find and grow new borrower pools. Utah-based auto lenderPrestige Financial Services chose to rely on an AI solution instead. The chose Zest AI to find and cultivate a borrower pool of people in the 19-35 age group. Using an AI-based loan approval workflow, Prestige was able to increase loan approval rates by 25%, and for people under 20 by threefold.
  2. Mortgage lenders’ adoption of AI for finding qualified first-time homeowners is going to increase as more realize Gen Z (23 – 36-year-olds) are the most motivated of all to purchase a home. In 2020, long-standing assumptions about first-time homebuyers and their motivations are going to change. A recent story in HousingWire, “This generation is the most willing to do whatever it takes to buy a home,” explains that Gen Z, or those people born between 1996 and 2010, are the most likely to relocate to purchase a new home. A recent TransUnion market analysis found 70% of Gen Z prospective home buyers are willing to relocate to buy their first home, leading all active generations. 65% of Gen Xers, or those born between 1965 to 1980, were the second most likely to move. AI and ML can help lenders more precisely target potential Gen Z first-time homebuyers, measuring the impact of their marketing campaigns on attracting new borrowers. The TransUnion market analysis finds that 58% of respondents are delaying a home purchase due to anticipated high down payments or monthly payments. 51% said the need to obtain a 10% to 20% down payment was stopping them. According to Joe Mellman, TransUnion senior vice president, and mortgage business leader, “Many of our potential first-time homebuyer respondents don’t seem to be aware of the wide variety of financing options available to them.” The TransUnion market analysis found that many of the potential first-time homeowner respondents have never heard of low down-payment options from Fannie Mae, Freddie Mac, or of the Federal Housing Administration.
  3. Zest predicts banks and other financial institutions will strengthen their business cases for AI pilots and production-level deployments by recognizing the operating expense (OPEX) savings of ML. Several recurring costs involved in developing, validating and deploying credit risk models can be reduced or cut by switching to machine learning, according to Zest. Lenders can get the most out of their data acquisition spending by using modern ML tools to assess which data sources yield the most predictive power for a model. Lenders will also switch to ML to simplify their IT and risk operations by consolidating into fewer models that can do the work of what used to be multiple individual linear models for every customer segment.
  4. Compliance cost growth will decline even faster due to ML. Financial institutions that have AI/ML algorithms in production log every change in a model and can produce all the required model risk governance documents in minutes instead of a compliance team manually taking weeks to do it. Automated tools also shrink the time it takes to do fair lending testing by building less discriminatory models on the fly rather than the time-intensive approach of drop-one-variable-and-test. Time is money, especially in lending.
  5. AI and ML will gain critical mass in collections, providing insights into which approach is the most effective for a given customer. Zest has built collections models for a few financial services firms and has found them to be very effective. Collections logic, predicting which customers to wait on when bills are past due, is a strong fit for machine learning. With one bank, Zest found that ML models can, for example, accurately target the borrowers most likely to make a certain minimum payment based on the value of their loan within 60 days of falling behind their due date. In three months, Zest built two models from traditional credit bureaus and the bank’s proprietary collections metrics to predict this repayment propensity of borrowers. One insight into the data was that borrower behavior accounted for just over half of the bank’s ability to collect missed payments, but operations played a significant role.
  6. If there’s a downturn, ML will get blamed (even though it can actually help in a downturn). Pankaj Kulshreshtha, CEO of Scienaptics, originally made this observation at the Money 20/20 Conference held earlier this year. Models built only in good times can see their correlations break when times go bad. Lenders who observe best practices in AI and ML adoption will make sure to stress-test their models, perhaps by including synthetic data to add heterogeneity. Better ML monitoring will be important, too. “ML models and algorithmic monitors can do a better job seeing around corners, spotting rising numbers of inbound outlier applicants that signal more volatile conditions ahead,” says Seth Silverstein, Executive Vice President of Credit Risk Analytics for Zest AI.  An effective ML monitoring tool should excel at spotting outlier applicants and feature drift, ensuring more accurate model outcomes.
  7. 2020 is going to be a break-out year for partnerships and co-opetition as payments, lending and insurance firms vie for a growth position in embedded financial services. Matt Harris of Bain Capital Ventures’ prediction of embedded fintech suggests a proliferation of cloud-based Fintech apps around the core: payments, lending, insurance. That creates an ideal situation for AI-related alliances and partnerships among the incumbent lenders, startups, data aggregators and the CRAs. To Harris, the layers of the stack are centered around connectivity, intelligence, and ubiquity. According to Crunchbase, there have been 51 Fintech acquisitions in 2019 alone. Plaid’s acquisition of Quovo in January for approximately $200 million and Fiserv’s acquisition of First Data reflect how Fintechs are creating their own unique tech stacks already.
  8.  Zest predicts Fintechs will seek out AI and ML modeling expertise more so than build expertise and teams on their own, which will be costlier and take longer. Embedded Fintech’s future adoption rate is predicated on how effective development efforts are today at minimizing incidental bias and providing customers with greater visibility into how and why models provide specific results “Some of these startups are bringing their own data science and ML models. We have to hope these firms own, build, or buy the tools to ensure their models are inclusive, free of incidental bias, and use transparent AI customers can trust. We see explainable AI as being an essential feature or service in that tech stack,” says Zest’s Silverstein.
  9.  Fintechs will rely on AI and ML to help close the talent gap each of them has today while also improving the effectiveness of their talent management strategies. Finding, recruiting, and hiring the best candidates for development, engineering, marketing, sales, and senior management roles is an area Fintechs will increasingly adopt AI and ML for in 2020. Fintech CEOs and CHROs will begin upskilling programs for themselves and their teams to increase AI fluency and skills mastery in 2020. According to a recent Harris Interactive survey completed in collaboration with Eightfold titled Talent Intelligence And Management Report 2019-2020, 73% of U.S. CEOs and CHROs plan to use more AI in the next three years to improve talent management.
  10. Credit unions will adopt ML in 2020 to automate routine tasks and free up human underwriters to focus on providing more personalized services, including improvements in inquiry resolution & dispute and fraud management. Credit unions are built on an annuity-based business model that delivers successively higher profitability the longer a member is retained. Credit unions will capitalize on ML by driving up loan approvals with no added risk and automating more of the loan approval process. By the end of 2020, according to a Fannie Mae survey of mortgage lenders, 71% of credit unions plan to investigate, test, or fully implement AI/ML solutions – up from just 40% in 2018. AI and ML will also be adopted across credit unions to improve inquiry resolution & dispute and fraud management while improving multichannel customer experiences. Providing real-time, relevant responses to customers to expedite inquiries and dispute resolutions using AI and ML is going to become commonplace in 2020. AI and ML are predicted to make a significant contribution to automating anomaly detection and borrower default risk assessment as the graphic below from Fannie Mae’s Mortgage Lender Sentiment Survey® How Will Artificial Intelligence Shape Mortgage Lending? Q3 2018 Topic Analysis illustrates:

 

 

Predicting How AI Will Improve Talent Management In 2020

Predicting How AI Will Improve Talent Management In 2020

47% of U.S.-based enterprises are using AI today for recruitment, leading all countries in the survey. U.S.-based enterprises’’ adoption of AI for recruitment soared in the last year, jumping from 22% in 2018 to 47% this year based on last years’ Harris Interactive Talent Intelligence and Management Report 2018.

  • 73% of U.S. CEOs and CHROs plan to use more AI in the next three years to improve talent management.
  • U.S.-based enterprises’’ adoption of AI for recruitment soared in the last year, jumping from 22% in 2018 to 47% this year.
  • U.S.-based enterprises lead in the use of AI to automate repetitive tasks (44%) and employee retention (42%).

These and many other fascinating insights are from a recent study completed by Harris Interactive in collaboration with Eightfold titled Talent Intelligence And Management Report 2019-2020, which provides insights into how CHROs are adopting AI today and in the future. You can download a copy here. A total of 1,350 CEOs and CHROs from the U.S., France, Germany, and the U.K. responded to the survey. One of the most noteworthy findings is how U.S-based CEOs and CHROs lead the world in prioritizing and taking action on improving their teams and their own AI skills. The more expertise they and their teams have with AI, the more effective they will be achieving operational improvements while taming the bias beast. The following graphic provides insights into how the four nations surveyed vary by their CEOs’ and CHROs’ perception of new technologies having had positive impacts, their plans for using AI in three years, and employee’s concerns about AI:

Predicting How AI Will Improve Talent Management In 2020

Predicting The Future Of AI In Talent Management

Four leading experts who are actively advising clients, implementing, and using AI to solve talent management challenges shared their predictions of how AI will improve talent management in 2020. The panel includes Kelly O. Kay, Partner, Heidrick & Struggles, Jared Lucas, Chief People Officer at MobileIron, Mandy Sebel, Senior Vice President, People at UiPath and David Windley CEO, IQTalent Partners. Mr. Kay leads the Software Practice for Heidrick & Struggles, a leading executive search and consulting firm commented: “As we all know, the talent crisis of 2019 is real and Eightfold’s application of AI on today is the most impactful approach I’ve seen and the outcomes they deliver eliminate unconscious bias, increases transparency and improves matching supply and demand of talent.” The following are their predictions of how AI will improve the following areas of talent management in 2020:

  • “Pertaining to talent attraction & acquisition-as adoption of intelligent automation and AI tools increases hiring managers and recruiters more easily uncover and surface overlooked talent pools,” said Mandy Sebel, Senior Vice President, People at UiPath.
  • “I predict that AI will become a requirement for companies in the screening of candidates due to the pervasive need to find higher-quality candidates at a faster pace,” said Jared Lucas, Chief People Officer at MobileIron.
  • “I believe the use of AI in the talent acquisition space will begin to hit critical mass in 2020. We are still in the early adopter phase, but the use of AI to match potential candidates to job profiles is catching on. Especially the use of AI for rediscovering candidates in ATS systems of larger corporations. Companies like Eightfold, Hiretual, and Atipica are leading the way,” said David Windley CEO, IQTalent Partners.
  • “Fear of job replacement will also subside, and more focus on job/role evolution as teams are experiencing firsthand how respective task elimination allows them to do more meaningful work,” commented Mandy Sebel, Senior Vice President, People at UiPath.
  • AI will provide the insights needed for CHROs to retain and grow their best talent, according to Jared Lucas, Chief People Officer at MobileIron. “I predict that AI will drive better internal mobility and internal candidate identification as companies are better able to mine their internal talent to fill critical roles,” he said.
  • Having gained credibility for executive and senior management recruiting, AI platforms’ use will continue to proliferate in 2020. “Private Equity is beginning to commercialize how AI can help select executives for roles based on competencies and experiences, which is exciting!” said Kelly O. Kay, Partner, Heidrick & Struggles.
<span>%d</span> bloggers like this: