Skip to content
Advertisements

Posts from the ‘Marketing analytics’ Category

10 Charts That Will Change Your Perspective Of AI In Marketing

  • Top-performing companies are more than twice as likely to be using AI for marketing (28% vs. 12%) according to Adobe’s latest Digital Intelligence Briefing.
  • Retailers are investing $5.9B this year in AI-based marketing and customer service solutions to improve shoppers’ buying experiences according to IDC.
  • Financial Services marketers lead all other industries in AI application adoption, with 37% currently using them today.
  • Sales and Marketing teams most often collaborate using Configure-Price-Quote (CPQ) and Marketing Automation AI-based applications, with sales leaders predicting AI adoption will increase 155% across sales teams in two years.

Artificial Intelligence enables marketers to understand sales cycles better, correlating their strategies and spending to sales results. AI-driven insights are also helping to break down data silos so marketing and sales can collaborate more on deals. Marketing is more analytics and quant-driven than ever before with the best CMOs knowing which metrics and KPIs to track and why they fluctuate.

The bottom line is that machine learning and AI are the technologies CMOs and their teams need to excel today. The best CMOs balance the quant-intensive nature of running marketing with qualitative factors that make a company’s brand and customer experience unique. With greater insight into how prospects make decisions when, where, and how to buy, CMOs are bringing a new level of intensity into driving outcomes. An example of this can be seen from the recent Forbes Insights and Quantcast research, Lessons of 21st-Century Brands Modern Brands & AI Report (17 pp., PDF, free, opt-in). The study found that AI enables marketers to increase sales (52%), increase in customer retention (51%), and succeed at new product launches (49%). AI is making solid contributions to improving lead quality, persona development, segmentation, pricing, and service.

The following ten charts provide insights into how AI is transforming marketing:

  • 21% of sales leaders rely on AI-based applications today, with the majority collaborating with marketing teams sharing these applications. Sales leaders predict that their use of AI will increase 155% in the next two years. Sales leaders predict AI will reach critical mass by 2020 when 54% expect to be using these technologies. Marketing and sales are relying on AI-based marketing automation, configure-price-quote (CPQ), and intelligent selling systems to increase revenue and profit growth significantly in the next two years. Source: Salesforce Research, State of Sales, 3rd edition. (58 pp., PDF, free, opt-in).

  • AI sees the most significant adoption by marketers working in $500M to $1B companies, with conversational AI for customer service is the most dominant. Businesses with between $500M to $1B lead all other revenue categories in the number and depth of AI adoption use cases. Just over 52% of small businesses with sales of $25M or less are using AI for predictive analytics for customer insights. It’s interesting to note that small companies are the leaders in AI spending, at 38.1%, to improve marketing ROI by optimizing marketing content and timing. Source: The CMO Survey: Highlights and Insights Report, February 2019. Duke University, Deloitte and American Marketing Association. (71 pp., PDF, free, no opt-in).

  • 22% of marketers currently are using AI-based applications with an additional 57% planning to use in the next two years. There are nine dominant use cases marketers are concentrating on today, ranging from personalized channel experiences to programmatic advertising and media buying to predictive customer journeys and real-time next best offers. Source: Salesforce’s State of Marketing Study, 5th edition

  • Content personalization and predictive analytics from customer insights are the two areas CMOs most prioritize AI spending today. The CMO study found that B2B service companies are the top user of AI for content personalization (62.2%) and B2B product companies use AI for augmented and virtual reality, facial recognition and visual search more than any other business types. Source: CMOs’ Top Uses For AI: Personalization and Predictive Analytics. Marketing Charts. March 14, 2019

  • Personalizing the overall customer journey and driving next-best offers in real-time are the two most common ways marketing leaders are using AI today, according to Salesforce. Improving customer segmentation, improving advertising and media buying, and personalizing channel experiences are the next fastest-growing areas of AI adoption in marketing today. Source: Salesforce’s State of Marketing Study, 5th edition

  • 81% of marketers are either planning to or are using AI in audience targeting this year. 80% are currently using or planning to use AI for audience segmentation. EConsultancy’s study found marketers are enthusiastic about AI’s potential to increase marketing effectiveness and track progress. 88% of marketers interviewed say AI will enable them t be more effective in getting to their goals. Source: Dream vs. Reality: The State of Consumer First and Omnichannel Marketing. EConsultancy (36 pp., PDF, free, no opt-in).

  • Over 41% of marketers say AI is enabling them to generate higher revenues from e-mail marketing. They also see an over 13% improvement in click-thru rates and 7.64% improvement in open rates. Source: 4 Positive Effects of AI Use in Email Marketing, Statista (infographic), March 1, 2019.

Additional data sources on AI’s use in Marketing:

15 examples of artificial intelligence in marketing, eConsultancy, February 28, 2019

4 Positive Effects of AI Use in Email Marketing, Statista, March 1, 2019

4 Ways Artificial Intelligence Can Improve Your Marketing (Plus 10 Provider Suggestions), Forbes, Kate Harrison, January 20, 2019

AI: The Next Generation Of Marketing Driving Competitive Advantage Throughout The Customer Life Cycle, Forrester Consulting. February 2017 (10 pp., PDF, free, no opt-in).

Artificial Intelligence for Marketing (complete book) (361 pp., PDF, free, no opt-in)

Artificial Intelligence Roundup, eMarketer, May 2018 (15 pp., PDF, free, no opt-in)

Digital Intelligence Briefing, Adobe, 2018 (43 pp., PDF, free, no opt-in).

How 28 Brands Are Using AI to Enhance Their Marketing [Infographic], Impact Blog

How AI Is Changing Sales, Harvard Business Review, July 30, 2018

How Top Marketers Use Artificial Intelligence On-Demand Webinar with Vala Afshar, Chief Digital Evangelist, Salesforce and Meghann York, Director, Product Marketing, Salesforce

How To Win Tomorrow’s Car Buyers – Artificial Intelligence in Marketing & Sales, McKinsey Center for Future Mobility, McKinsey & Company. February 2019. (44 pp., PDF, free, no opt-in)

IDC MarketScape: Worldwide Artificial Intelligence in Enterprise Marketing Clouds 2017 Vendor Assessment, (11 pp., PDF, free, no opt-in.)

In-depth: Artificial Intelligence 2019, Statista Digital Market Outlook, February 2019 (client access reqd).

Leading reasons to use artificial intelligence (AI) for marketing personalization according to industry professionals worldwide in 2018, Statista.

Lessons of 21st-Century Brands Modern Brands & AI Report, Forbes Insights and Quantcast Study (17 pp., PDF, free, opt-in),

Powerful pricing: The next frontier in apparel and fashion advanced analytics, McKinsey & Company, December 2018

Share of marketing and agency professionals who are comfortable with AI-enabled technology automated handling of their campaigns in the United States as of June 2018, Statista.  

The CMO Survey: Highlights and Insights Report, February 2019. Duke University, Deloitte and American Marketing Association. (71 pp., PDF, free, no opt-in).

Visualizing the uses and potential impact of AI and other analytics, McKinsey Global Institute, April 2018.  Interactive page based on Tableau data set can be found here.

What really matters in B2B dynamic pricing, McKinsey & Company, October 2018

Winning tomorrow’s car buyers using artificial intelligence in marketing and sales, McKinsey & Company, February 2019

Worldwide Spending on Artificial Intelligence Systems Will Grow to Nearly $35.8 Billion in 2019, According to New IDC Spending Guide, IDC; March 11, 2019

Advertisements

What Matters Most In Business Intelligence, 2019

  • Improving revenues using BI is now the most popular objective enterprises are pursuing in 2019.
  • Reporting, dashboards, data integration, advanced visualization, and end-user self-service are the most strategic BI initiatives underway in enterprises today.
  • Operations, Executive Management, Finance, and Sales are primarily driving Business Intelligence (BI) adoption throughout enterprises today.
  • Tech companies’ Operations & Sales teams are the most effective at driving BI adoption across industries surveyed, with Advertising driving BI adoption across Marketing.

These and many other fascinating insights are from Dresner Advisory Associates’ 10th edition of its popular Wisdom of Crowds® Business Intelligence Market Study. The study is noteworthy in that it provides insights into how enterprises are expanding their adoption of Business Intelligence (BI) from centralized strategies to tactical ones that seek to improve daily operations. The Dresner research teams’ broad assessment of the BI market makes this report unique, including their use visualizations that provide a strategic view of market trends. The study is based on interviews with respondents from the firms’ research community of over 5,000 organizations as well as vendors’ customers and qualified crowdsourced respondents recruited over social media. Please see pages 13 – 16 for the methodology.

Key insights from the study include the following:

  • Operations, Executive Management, Finance, and Sales are primarily driving Business Intelligence (BI) adoption throughout their enterprises today. More than half of the enterprises surveyed see these four departments as the primary initiators or drivers of BI initiatives. Over the last seven years, Operations departments have most increased their influence over BI adoption, more than any other department included in the current and previous survey. Marketing and Strategic Planning are also the most likely to be sponsoring BI pilots and looking for new ways to introduce BI applications and platforms into use daily.

  • Tech companies’ Operations & Sales teams are the most effective at driving BI adoption across industries surveyed, with Advertising driving BI adoption across Marketing. Retail/Wholesale and Tech companies’ sales leadership is primarily driving BI adoption in their respective industries. It’s not surprising to see the leading influencer among Healthcare respondents is resource-intensive HR. The study found that Executive Management is most likely to drive business intelligence in consulting practices most often.

  • Reporting, dashboards, data integration, advanced visualization, and end-user self-service are the most strategic BI initiatives underway in enterprises today. Second-tier initiatives include data discovery, data warehousing, data discovery, data mining/advanced algorithms, and data storytelling. Comparing the last four years of survey data, Dresner’s research team found reporting retains all-time high scores as the top priority, and data storytelling, governance, and data catalog hold momentum. Please click on the graphic to expand for easier reading.

  • BI software providers most commonly rely on executive-level personas to design their applications and add new features. Dresner’s research team found all vertical industries except Business Services target business executives first in their product design and messaging. Given the customer-centric nature of advertising and consulting services business models, it is understandable why the primary focus BI vendors rely on in selling to them are customer personas. The following graphic compares targeted users for BI by industry.

  • Improving revenues using BI is now the most popular objective in 2019, despite BI initially being positioned as a solution for compliance and risk management. Executive Management, Marketing/Sales, and Operations are driving the focus on improving revenues this year. Nearly 50% of enterprises now expect BI to deliver better decision making, making the areas of reporting, and dashboards must-have features. Interestingly, enterprises aren’t looking to BI as much for improving operational efficiencies and cost reductions or competitive advantages. Over the last 12 to 18 months, more tech manufacturing companies have initiated new business models that require their operations teams to support a shift from products to services revenues. An example of this shift is the introduction of smart, connected products that provide real-time data that serves as the foundation for future services strategies. Please click on the graphic to expand for easier reading.

  • In aggregate, BI is achieving its highest levels of adoption in R&D, Executive Management, and Operations departments today. The growing complexity of products and business models in tech companies, increasing reliance on analytics and BI in retail/wholesale to streamline supply chains and improve buying experiences are contributing factors to the increasing levels of BI adoption in these three departments. The following graphic compares BI’s level of adoption by function today.

  • Enterprises with the largest BI budgets this year are investing more heavily into dashboards, reporting, and data integration. Conversely, those with smaller budgets are placing a higher priority on open source-based big data projects, end-user data preparation, collaborative support for group-based decision-making, and enterprise planning. The following graphic provides insights into technologies and initiatives strategic to BI at an enterprise level by budget plans.

  • Marketing/Sales and Operations are using the greatest variety of BI tools today. The survey shows how conversant Operations professionals are with the BI tools in use throughout their departments. Every one of them knows how many and most likely which types of BI tools are deployed in their departments. Across all industries, Research & Development (R&D), Business Intelligence Competency Center (BICC), and IT respondents are most likely to report they have multiple tools in use.

10 Ways Machine Learning Is Revolutionizing Sales

  • Sales teams adopting AI are seeing an increase in leads and appointments of more than 50%, cost reductions of 40%–60%, and call time reductions of 60%–70% according to the Harvard Business Review article Why Salespeople Need to Develop Machine Intelligence.
  • 62% of highest performing salespeople predict guided selling adoption will accelerate based on its ability rank potential opportunities by value and suggest next steps according to Salesforces’ latest State of Sales research study.
  • By 2020, 30% of all B2B companies will employ AI to augment at least one of their primary sales processes according to Gartner.
  • High-performing sales teams are 4.1X more likely to use AI and machine learning applications than their peers according to the State of Sales published by Salesforce.
  • Intelligent forecasting, opportunity insights, and lead prioritization are the top three AI and machine learning use cases in sales.

Artificial Intelligence (AI) and machine learning show the potential to reduce the most time-consuming, manual tasks that keep sales teams away from spending more time with customers. Automating account-based marketing support with predictive analytics and supporting account-centered research, forecasting, reporting, and recommending which customers to upsell first are all techniques freeing sales teams from manually intensive tasks.

The Race for Sales-Focused AI & Machine Learning Patents Is On

CRM and Configure, Price & Quote (CPQ) providers continue to develop and fine-tune their digital assistants, which are specifically designed to help the sales team get the most value from AI and machine learning. Salesforces’ Einstein supports voice-activation commands from Amazon Alexa, Apple Siri, and Google. Salesforce and other enterprise software companies continue aggressively invest in Research & Development (R&D). For the nine months ended October 31, 2018, Salesforce spent $1.3B or 14% of total revenues compared to $1.1B or 15% of total revenues, during the same period a year ago, an increase of $211M according to the company’s 10Q filed with the Securities and Exchange Commission.

The race for AI and machine learning patents that streamline selling is getting more competitive every month. Expect to see the race of sales-focused AI and machine learning patents flourish in 2019. The National Bureau of Economic Research published a study last July from the Stanford Institute For Economic Policy Research titled Some Facts On High Tech Patenting. The study finds that patenting in machine learning has seen exponential growth since 2010 and Microsoft had the greatest number of patents in the 2000 to 2015 timeframe. Using patent analytics from PatentSight and ipsearchIAM published an analysis last month showing Microsoft as the global leader in machine learning patents with 2,075.  The study relied on PatentSight’s Patent Asset Index to rank machine learning patent creators and owners, revealing Microsoft and Alphabet are dominating today. Salesforce investing over $1B a year in R&D reflects how competitive the race for patents and intellectual property is.

10 Ways Machine Learning Is Revolutionizing Sales

Fueled by the proliferation of patents and the integration of AI and machine learning code into CRM, CPQ, Customer Service, Predictive Analytics and a wide variety of Sales Enablement applications, use cases are flourishing today. Presented below are the ten ways machine learning is most revolutionizing selling today:

 

  1. AI and machine learning technologies excel at pattern recognition, enabling sales teams to find the highest potential new prospects by matching data profiles with their most valuable customers. Nearly all AI-enabled CRM applications are providing the ability to define a series of attributes, characteristics and their specific values that pinpoint the highest potential prospects. Selecting and prioritizing new prospects using this approach saves sales teams thousands of hours a year.
  2. Lead scoring and nurturing based on AI and machine learning algorithms help guide sales and marketing teams to turn Marketing Qualified Leads (MQL) into Sales Qualified Leads (SQL), strengthening sales pipelines in the process. One of the most important areas of collaboration between sales and marketing is lead nurturing strategies that move prospects through the pipeline. AI and machine learning are enriching the collaboration with insights from third-party data, prospect’s activity at events and on the website, and from previous conversations with salespeople. Lead scoring and nurturing relies heavily on natural language generation (NLG) and natural-language processing (NLP) to help improve each lead’s score.
  3. Combining historical selling, pricing and buying data in a single machine learning model improves the accuracy and scale of sales forecasts. Factoring in differences inherent in every account given their previous history and product and service purchasing cycles is invaluable in accurately predicting their future buying levels. AI and machine learning algorithms integrated into CRM, sales management and sales planning applications can explain variations in forecasts, provided they have the data available. Forecasting demand for new products and services is an area where AI and machine learning are reducing the risk of investing in entirely new selling strategies for new products.
  4. Knowing the propensity of a given customer to churn versus renew is invaluable in improving Customer Lifetime Value. Analyzing a diverse series of factors to see which customers are going to churn or leave versus those that will renew is among the most valuable insights AI and machine learning is delivering today. Being able to complete a Customer Lifetime Value Analysis for every customer a company has provides a prioritized roadmap of where the health of client relationships are excellent versus those that need attention. Many companies are using Customer Lifetime Value Analysis as a proxy for a customer health score that gets reviewed monthly.
  5. Knowing the strategies, techniques and time management approaches the top 10% of salespeople to rely on to excel far beyond quota and scaling those practices across the sales team based on AI-driven insights. All sales managers and leaders think about this often, especially in sales teams where performance levels vary widely. Knowing the capabilities of the highest-achieving salespeople, then selectively recruiting those sales team candidates who have comparable capabilities delivers solid results. Leaders in the field of applying AI to talent management include Eightfold whose approach to talent management is refining recruiting and every phase of managing an employee’s potential. Please see the recent New York Times feature of them here.
  6. Guided Selling is progressing rapidly from a personalization-driven selling strategy to one that capitalized on data-driven insights, further revolutionizing sales. AI- and machine learning-based guided selling is based on prescriptive analytics that provides recommendations to salespeople of which products, services, and bundles to offer at which price. 62% of highest performing salespeople predict guided selling adoption will accelerate based on its ability rank potential opportunities by value and suggest next steps according to Salesforces’ latest State of Sales research study.
  7. Improving the sales team’s productivity by using AI and machine learning to analyze the most effective actions and behaviors that lead to more closed sales. AI and machine learning-based sales contact and customer predictive analytics take into account all sources of contacts with customers and determine which are the most effective. Knowing which actions and behaviors are correlated with the highest close rates, sales managers can use these insights to scale their sales teams to higher performance.
  8. Sales and marketing are better able to define a price optimization strategy using all available data analyzing using AI and machine learning algorithms. Pricing continues to be an area the majority of sales and marketing teams learn to do through trial and error. Being able to analyze pricing data, purchasing history, discounts are taken, promotional programs participated in and many other factors, AI and machine learning can calculate the price elasticity for a given customer, making an optimized price more achievable.
  9. Personalizing sales and marketing content that moves prospects from MQLs to SQLs is continually improving thanks to AI and machine learning. Marketing Automation applications including HubSpot and many others have for years been able to define which content asset needs to be presented to a given prospect at a given time. What’s changed is the interactive, personalized nature of the content itself. Combining analytics, personalization and machine learning, marketing automation applications are now able to tailor content and assets that move opportunities forward.
  10. Solving the many challenges of sales engineering scheduling, sales enablement support and dedicating the greatest amount of time to the most high-value accounts is getting solved with machine learning. CRM applications including Salesforce can define a salesperson’s schedule based on the value of the potential sale combined with the strength of the sales lead, based on its lead score. AI and machine learning optimize a salesperson’s time so they can go from one customer meeting to the next, dedicating their time to the most valuable prospects.

Which CRM Applications Matter Most In 2018

 

According to recent research by Gartner,

  • Marketing analytics continues to be hot for marketing leaders, who now see it as a key business requirement and a source of competitive differentiation
  • Artificial intelligence (AI) and predictive technologies are of high interest across all four CRM functional areas, and mobile remains in the top 10 in marketing, sales and customer service.
  • It’s in customer service where AI is receiving the highest investments in real use cases rather than proofs of concept (POCs) and experimentation.
  • Sales and customer service are the functional areas where machine learning and deep neural network (DNN) technology is advancing rapidly.

These and many other fascinating insights are from Gartner’s What’s Hot in CRM Applications in 2018 by Ed Thompson, Adam Sarner, Tad Travis, Guneet Bharaj, Sandy Shen and Olive Huang, published on August 14, 2018. Gartner clients can access the study here  (10 pp., PDF, client access reqd.).

Gartner continually tracks and analyzes the areas their clients have the most interest in and relies on that data to complete their yearly analysis of CRM’s hottest areas. Inquiry topics initiated by clients are an excellent leading indicator of relative interest and potential demand for specific technology solutions. Gartner organizes CRM technologies into the four category areas of Marketing, Sales, Customer Service, and Digital Commerce.

The following graphic from the report illustrates the top CRM applications priorities in Marketing, Sales, Customer Service, and Digital Commerce.

Key insights from the study include the following:

  • Marketing analytics continues to be hot for marketing leaders, who now see it as a key business requirement and a source of competitive differentiation. In my opinion and based on discussions with CMOs, interest in marketing analytics is soaring as they are all looking to quantify their team’s contribution to lead generation, pipeline growth, and revenue. I see analytics- and data-driven clarity as the new normal. I believe that knowing how to quantify marketing contributions and performance requires CMOs and their teams to stay on top of the latest marketing, mobile marketing, and predictive customer analytics apps and technologies constantly. The metrics marketers choose today define who they will be tomorrow and in the future.
  • Artificial intelligence (AI) and predictive technologies are of high interest across all four CRM functional areas, and mobile remains in the top 10 in marketing, sales and customer service. It’s been my experience that AI and machine learning are revolutionizing selling by guiding sales cycles, optimizing pricing and enabling CPQ to define and deliver smart, connected products. I’m also seeing CMOs and their teams gain value from Salesforce Einstein and comparable intelligent agents that exemplify the future of AI-enabled selling. CMOs are saying that Einstein can scale across every phase of customer relationships. Based on my previous consulting in CPQ and pricing, it’s good to see decades-old core technologies underlying Price Optimization and Management are getting a much-needed refresh with state-of-the-art AI and machine learning algorithms, which is one of the factors driving their popularity today. Using Salesforce Einstein and comparable AI-powered apps I see sales teams get real-time guidance on the most profitable products to sell, the optimal price to charge, and which deal terms have the highest probability of closing deals. And across manufacturers on a global scale sales teams are now taking a strategic view of Configure, Price, Quote (CPQ) as encompassing integration to ERP, CRM, PLM, CAD and price optimization systems. I’ve seen global manufacturers take a strategic view of integration and grow far faster than competitors. In my opinion, CPQ is one of the core technologies forward-thinking manufacturers are relying on to launch their next generation of smart, connected products.
  • It’s in customer service where AI is receiving the highest investments in real use cases rather than proofs of concept (POCs) and experimentation. It’s fascinating to visit with CMOs and see the pilots and full production implementations of AI being used to streamline customer service. One CMO remarked how effective AI is at providing greater contextual intelligence and suggested recommendations to customers based on their previous buying and services histories. It’s interesting to watch how CMOs are attempting to integrate AI and its associated technologies including ChatBots to their contribution to Net Promoter Scores (NPS). Every senior management team running a marketing organization today has strong opinions on NPS. They all agree that greater insights gained from predictive analytics and AI will help to clarify the true value of NPS as it relates to Customer Lifetime Value (CLV) and other key metrics of customer profitability.
  • Sales and customer service are the functional areas where machine learning and deep neural network (DNN) technology is advancing rapidly.  It’s my observation that machine learning’s potential to revolutionize sales is still nascent with many high-growth use cases completely unexplored. In speaking with the Vice President of Sales for a medical products manufacturer recently, she said her biggest challenge is hiring sales representatives who will have longer than a 19-month tenure with the company, which is their average today.  Imagine, she said, knowing the ideal attributes and strengths of their top performers and using machine learning and AI to find the best possible new sales hires. She and I discussed the spectrum of companies taking on this challenge, with Eightfold being one of the leaders in applying AI and machine learning to talent management challenges.

Source: Gartner by Ed Thompson, Adam Sarner, Tad Travis, Guneet Bharaj,  Sandy Shen and Olive Huang, published on August 14, 2018.

%d bloggers like this: