Skip to content

Posts from the ‘Location Intelligence’ Category

The Top 20 Machine Learning Startups To Watch In 2021

.
  • There are a record number of 9,977 machine learning startups and companies in Crunchbase today, an 8.2% increase over the 9,216 startups listed in 2020 and a 14.6% increase over the 8,705 listed in 2019.
  • Artificial Intelligence (A.I.) and machine learning (ML)-related companies received a record $27.6 billion in funding in 2020, according to Crunchbase. 
  • Of those A.I. and machine learning startups receiving funding since January 1, 2020, 62% are seed rounds, 31% early-stage venture rounds and 6.7% late-stage venture capital-funded rounds.
  • A.I. and machine learning startups’ median funding round was $4.4 million and the average was $29.8 million in 2020, according to Crunchbase.

Throughout 2020, venture capital firms continued expanding into new global markets, with London, New York, Tel Aviv, Toronto, Boston, Seattle and Singapore startups receiving increased funding. Out of the 79 most popular A.I. & ML startup locations, 15 are in the San Francisco Bay Area, making that region home to 19% of startups who received funding in the last year. Israel’s Tel Aviv region has 37 startups who received venture funding over the last year, including those launched in Herzliya, a region of the city known for its robust startup and entrepreneurial culture.  

The following graphic compares the top 10 most popular locations for A.I. & ML startups globally based on Crunchbase data as of today:

Top 20 Machine Learning Startups To Watch In 2021

Augury – Augury combines real-time monitoring data from production machinery with AI and machine learning algorithms to determine machine health, asset performance management (APM) and predictive maintenance (PdM) to provide manufacturing companies with new insights into their operations. The digital machine health technology that the company offers can listen to the machine, analyze the data and catch any malfunctions before they arise. This enables customers to adjust their maintenance and manufacturing processes based on actual machine conditions. The platform is in use with HVAC, industrial factories and commercial facilities.

Alation – Alation is credited with pioneering the data catalog market and is well-respected in the financial services community for its use of A.I. to interpret and present data for analysis. Alation has also set a quick pace to evolving its platform to include data search & discovery, data governance, data stewardship, analytics and digital transformation. With its Behavioral Analysis Engine, inbuilt collaboration capabilities and open interfaces, Alation combines machine learning with human insight to successfully tackle data and metadata management challenges. More than 200 enterprises are using Alation’s platform today, including AbbVie, American Family Insurance, Cisco, Exelon, Finnair, Munich Re, New Balance, Pfizer, Scandinavian Airlines and U.S. Foods. Headquartered in Silicon Valley, Alation is backed by leading venture capitalists including Costanoa, Data Collective, Icon, Sapphire and Salesforce Ventures.

Algorithmia – Algorithmia’s expertise is in machine learning operations (MLOps) and helping customers deliver ML models to production with enterprise-grade security and governance. Algorithmia automates ML deployment, provides tooling flexibility, enables collaboration between operations and development and leverages existing SDLC and CI/CD practices. Over 110,000 engineers and data scientists have used Algorithmia’s platform to date, including the United Nations, government intelligence agencies and Fortune 500 companies.

Avora – Avora is noteworthy for its augmented analytics platform, making in-depth data analysis intuitively as easy as performing web searches. The company’s unique technology hides complexity, empowering non-technical users to run and share their reports easily. By eliminating the limitations of existing analytics, reducing data preparation and discovery time by 50-80% and accelerating time to insight, Avora uses ML to streamline business decision-making. Headquartered in London with offices in New York and Romania, Avora helps accelerate decision making and productivity for customers across various industries and markets, including Retail, Financial Services, Advertising, Supply Chain and Media and Entertainment.

Boast.ai – Focused on helping companies in the U.S. and Canada recover their R&D costs from respective federal governments, Boast.ai enables engineers and accountants to gain tax credits using AI-based tools. Some of the tax programs Boast.ai works with include US R&D Tax Credits, Scientific Research and Experimental Development (SR&ED) and Interactive Digital Media Tax Credits (IDMTC). The startup has offices in San Francisco, Vancouver and Calgary.

ClosedLoop.ai – An Austin, Texas-based startup, ClosedLoop.ai has created one of the healthcare industry’s first data science platforms that streamline patient experiences while improving healthcare providers’ profitability.  Their machine learning automation platform and a catalog of pre-built predictive and prescriptive models can be customized and extended based on a healthcare provider’s unique population or client base needs. Examples of their technology applications include predicting admissions/readmissions, predicting total utilization & total risk, reducing out-of-network utilization, avoiding appointment no-shows, predicting chronic disease onset or progression and improving clinical documentation and reimbursement. The Harvard Business School, through its Kraft Precision Medicine Accelerator, recently named ClosedLoop.ai as one of the fastest accelerating companies in its Real World Data Analytics Landscapes report.

Databand – A Tel Aviv-based startup that provides a software platform for agile machine learning development, Databand was founded in 2018 by Evgeny Shulman, Joshua Benamram and Victor Shafran. Data engineering teams are responsible for managing a wide suite of powerful tools but lack the utilities they need to ensure their ops are running properly. Databand fills this gap with a solution that enables teams to gain a global view of their data flows, make sure pipelines complete successfully and monitor resource consumption and costs. Databand fits natively in the modern data stack, plugging seamlessly into tools like Apache Airflow, Spark, Kubernetes and various ML offerings from the major cloud providers.

DataVisor – DataVisor’s approach to using AI for increasing fraud detection accuracy on a platform level is noteworthy. Using proprietary unsupervised machine learning algorithms, DataVisor enables organizations to detect and act on fast-evolving fraud patterns and prevent future attacks before they happen. Combining advanced analytics and an intelligence network of more than 4.2B global user accounts, DataVisor protects against financial and reputational damage across various industries, including financial services, marketplaces, e-commerce and social platforms. They’re one of the more fascinating cybersecurity startups using AI today.

Exceed.ai – What makes Exceed.ai noteworthy is how their AI-powered sales assistant platform automatically communicates the lead’s context and enables sales and marketing teams to scale their lead engagement and qualification efforts accordingly. Exceed.ai follows up with every lead and qualifies them quickly through two-way, automated conversations with prospects using natural language over chat and email. Sales reps are freed from performing error-prone and repetitive tasks, allowing them to focus on revenue-generating activities such as phone calls and demos with potential customers.

Indico – Indico is a Boston-based startup specializing in solving the formidable challenge of how dependent businesses are on unstructured content yet lack the frameworks, systems and tools to manage it effectively. Indico provides an enterprise-ready A.I. platform that organizes unstructured content while streamlining and automating back-office tasks. Indico is noteworthy given its track record of helping organizations automate manual, labor-intensive, document-based workflows.  Its breakthrough in solving these challenges is an approach known as transfer learning, which allows users to train machine learning models with orders of magnitude fewer data than required by traditional rule-based techniques. Indico enables enterprises to deploy A.I. to unstructured content challenges more effectively while eliminating many common barriers to A.I. & ML adoption.

LeadGenius – LeadGenius is noteworthy for its use of AI to provide personalized and actionable B2B lead information that helps its clients attain their global revenue growth goals. LeadGenius’s worldwide team of researchers uses proprietary technologies, including AI and ML-based techniques, to deliver customized lead generation, lead enrichment and data hygiene services in the format, methods and frequency defined by the customer. Their mission is to enable B2B sales and marketing organizations to connect with their prospects via unique and personalized data sets.

Netra – Netra is a Boston-based startup that began as part of MIT CSAIL research and has multiple issued and pending patents on its technology today. Netra is noteworthy for how advanced its video imagery scanning and text metadata interpretation are, ensuring safety and contextual awareness. Netra’s patented A.I. technology analyzes videos in real-time for contextual references to unsafe content, including deepfakes and potential cybersecurity threats. 

Particle –  Particle is an end-to-end IoT platform that combines software including A.I., hardware and connectivity to provide a wide range of organizations, from startups to enterprises, with the framework they need to launch IoT systems and networks successfully.  Particle customers include Jacuzzi, Continental Tires, Watsco, Shifted Energy, Anderson EV, Opti and others. Particle is venture-backed and has offices in San Francisco, Shenzhen, Las Vegas, Minneapolis and Boston. Particle’s developer community includes over 200,000 developers and engineers in more than 170 countries today.

RideVision – RideVision was founded in 2018 by motorcycle enthusiasts Uri Lavi and Lior Cohen. The company is revolutionizing the motorcycle-safety industry by harnessing the strength of artificial intelligence and image-recognition technology, ultimately providing riders with a much broader awareness of their surroundings, preventing collisions and enabling bikers to ride with full confidence that they are safe. RideVision’s latest round was $7 million in November of last year, bringing their total funding to $10 million in addition to a partnership with Continental AG.

Savvie – Savvie is an Oslo-based startup specializing in translating large volumes of data into concrete actions that bakery and café owners can utilize to improve their bottom line every day.  In doing so, we help food businesses make the right decisions to optimize their operations and increase profitability while reducing waste at its source. What’s noteworthy about this startup is how adept they are at fine-tuning ML algorithms to provide their clients with customized recommendations and real-time insights about their food and catering businesses.  Their ML-driven insights are especially valuable given how bakery and café owners are pivoting their business models in response to the pandemic.

SECURITI.ai – One of the most innovative startups in cybersecurity, combining AI and ML to secure sensitive data in multi-cloud and mixed platform environments, SECURITI.ai is a machine learning company to watch in 2021, especially if you are interested in cybersecurity.  Their AI-powered platform and systems enable organizations to discover potential breach risk areas across multi-cloud, SaaS and on-premise environments, protect it and automate all private systems, networks and infrastructure functions.

SkyHive – SkyHive is an artificial intelligence-based SaaS platform that aims to reskill enterprise workforces and communities. It develops and commercializes a methodology, Quantum Labor Analysis, to deliver real-time, skill-level insights into internal workforces and external labor markets, identify future and emerging skills and facilitate individual-and company-level reskilling. SkyHive is industry-agnostic and supporting enterprise and government customers globally with a mission to reduce unemployment and underemployment. Sean Hinton founded the technology company in Vancouver, British Columbia, in 2017.

Stravito – Stravito is an A.I. startup that’s combining machine learning, Natural Language Processing (NLP) and Search to help organizations find and get more value out of the many market research reports, competitive, industry, market share, financial analysis and market projection analyses they have by making them searchable. Thor Olof Philogène and Sarah Lee founded the company in 2017, who identified an opportunity to help companies be more productive, getting greater value from their market research investments. Thor Olof Philogène and Andreas Lee were co-founders of NORM, a research agency where both worked for 15 years serving multinational brands, eventually selling the company to IPSOS. While at NORM, Anders and Andreas were receiving repeated calls from global clients that had bought research from them but could not find it internally and ended up calling them asking for a copy. Today the startup has Carlsberg, Comcast, Colruyt Group, Danone, Electrolux, Pepsi Lipton and others. Stravito has offices in Stockholm (H.Q.), Malmö and Amsterdam.

Verta.ai – Verta is a startup dedicated to solving the complex problems of managing machine learning model versions and providing a platform to launch models into production. Founded by Dr. Manasi Vartak, Ph.D., a graduate of MIT, who led a team of graduate and undergraduate students at MIT CSAIL to build ModelDB, Verta is based on their work define the first open-source system for managing machine learning models. Her dissertation, Infrastructure for model management and model diagnosis, proposes ModelDB, a system to track ML-based workflows’ provenance and performance. In August of this year, Verta received a $10 million Series A round led by Intel Capital and General Catalyst, who also led its $1.7 million seed round. For additional details on Verta.ai, please see How Startup Verta Helps Enterprises Get Machine Learning Right. The Verta MLOps platform launch webinar provides a comprehensive overview of the platform and how it’s been designed to streamline machine learning models into production:

V7 – V7 allows vision-based A.I. systems to learn continuously from training data with minimal human supervision. The London-based startup emerged out of stealth in August 2018 to reveal V7 Darwin, an image labeling platform to create training data for computer vision projects with little or no human involvement necessary. V7 specializes in healthcare, life sciences, manufacturing, autonomous driving, agri-tech, sporting clients like Merck, GE Healthcare and Toyota. V7 Darwin launched at CVPR 2019 in Long Beach, CA. Within its first year, it has semi-automatically annotated over 1,000 image and video segmentation datasets. V7 Neurons is a series of pre-trained image recognition applications for industry use. The following video explains how V7 Darwin works:

What You Need To Know About Location Intelligence In 2020

What You Need To Know About Location Intelligence In 2020

  • 53% of enterprises say that Location Intelligence is either critically important or very important to achieving their goals for 2020.
  • Leading analytics and platform vendors who offer Location Intelligence include Alteryx, Microsoft, Qlik, SAS, Tableau and TIBCO Software.
  • Location Intelligence vendors providing specialized apps and platforms include CARTO, ESRI, Galigeo, MapLarge, and Pitney Bowes.
  • Product Managers need to consider how adding Location Intelligence can improve the contextual accuracy of marketing, sales, and customer service apps and platforms.
  • Marketers need to look at how they can capitalize on smartphones’ prolific amounts of location data for improving advertising, buying, and service experiences for customers.
  • R&D, Operations, and Executive Management lead all other departments in their adoption and use of Location Intelligence this year.
  • Enterprises favor cloud-based Location Intelligence deployments in 2020, with on-premise deployments also seeing new sales this year.

These and many other fascinating insights are from Dresner Advisory Services’ 2020 Location Intelligence Market Study, their 7th annual report that examines enterprise end-users’ requirements and features including geocoding support, location intelligence visualization, analytics capabilities, and third-party GIS integration. The study is noteworthy for its depth of insights into industry adoption of Location Intelligence and how user requirements drive industry capabilities. Dresner Advisory Services defines location intelligence as a form of Business Intelligence (BI), where the dominant dimension used for analysis is location or geography. Most typically, though not exclusively, analyses are conducted by viewing data points overlaid onto an interactive map interface.

“When we began covering Location Intelligence in 2014, we saw the potential for the topic to gain mainstream interest,” said Howard Dresner, founder, and chief research officer at Dresner Advisory Services. “With the growth in visualization and the emergence of the Internet of Things (IoT), incorporating maps and location into business analyses have become increasingly important to many organizations.” Please see page 11 for a description of the methodology and page 13 for an overview of study demographics. Wisdom of Crowds® research is based on data collected on usage and deployment trends, products, and vendors.

Key insights from the study that provides an excellent background on the current state of location intelligence in 2020 include the following:

  • R&D, Operations, and Executive Management lead all enterprise areas in adoption with Location Intelligence being considered critical to their ongoing operations. The majority of Marketing & Sales leaders see Location Intelligence as very important to their ongoing operations. The following graphic compares how important Location Intelligence is to each of the seven departments included in the survey:
  • 90% of Government organizations consider Location Intelligence to be critical or very important to their ongoing operations. Healthcare providers have the second-highest number of organizations who rate Location Intelligence as critical. The study found that mean importance levels are similar across Business Services, Financial Services, Manufacturing, and Consumer Services organizations and decline further among Technology, Retail/Wholesale, and Higher Education segments.
  • Data visualization/mapping dominates all other Location Intelligence use cases in 2020, with over 70% of organizations considering it critical or very important to accomplishing their goals. The study found that the majority of other use cases haven’t achieved the broad adoption data visualization & mapping has. Despite the lower levels of criticality assigned to the nine other use cases, they each show the potential to streamline essential marketing, sales, and operational areas of an enterprise. Site planning/site selection, geomarketing, territory management/optimization, and logistics optimization make up a tier of secondary interest that taken together streamlines supply chains while making an organization easier to buy from. The Dresner research team also defines the third tier of use cases led by fleet routing and citizen services, followed by IoT & smart cities, indoor mapping, and real estate investment/pricing analysis. Despite IoT being over-promoted by vendors, just over 50% of enterprises say the technology is not important to them at this time. The following graphic compares Location Intelligence use cases by the level of criticality as defined by responding organizations:
  • R&D leads all departments in data visualization/mapping adoption, reflecting the high level of importance this use case has across entire enterprises as well. Additional departments and functional areas relying on data visualization/mapping include Operations, Business Intelligence Competency Center (BICC), and Executive Management. Geomarketing is seeing the most significant adoption in Marketing & Sales. Operations lead all other functional areas in the adoption of logistics optimization and fleet routing use cases. Dresner’s research team found that R&D’s interest in Location Intelligence, which varies across use cases, may reflect the use of packaged applications as well as select custom development.
  • Map-based visualization, dashboard inclusion of maps, and drill-down navigation through map interfaces are the three highest priority features enterprises look for today. These three features are considered very important to between 64% to 67% of leaders interviewed. Layered visualizations, multi-layer support, and custom region definition are the next most important features. The following graphic provides an overview of prioritized Location intelligence visualization features.
  • Executive Management, BICC, and Operations have the highest level of interest in map-based visualizations that further accelerate the adoption of Location Intelligence across enterprises. Executive Management also leads all others in their interest in dashboard inclusion of maps and custom map support. Executive Management’s increasing adoption of multiple Location intelligence use cases is a catalyst driving greater enterprise-wide adoption. R&D’s prioritizing the layering of visualizations on top of maps, offline mapping and animation of data on maps are leading indicators of these use cases attaining greater enterprise adoption in future years.
  • Four of the top ten Location Intelligence features are considered very important/critical to enterprises, reflecting a maturing market. The most popular (counting, quantifying, or grouping) is critical or very important to 46% of organizations and at least important to nearly 70%. Another indicator of how quickly Location Intelligence is maturing in enterprises is the advanced nature of analytics features being relied on today. Predicting trends and volatility, detecting clusters and outliers, and measuring distances reflect how multiple departments in enterprises are collaborating using Location Intelligence to achieve their shared goals.
  • Government dominates the use of data visualization/mapping with a strong interest in site planning/site selection, citizen services, fleet routing, and territory management. Business Services are most interested in using Location Intelligence for Indoor Mapping and IoT & Smart Cities. Geomarketing is the most adopted feature in Higher Education, Financial Services, Healthcare, and Retail/Wholesale. Manufacturing and Retail/Wholesale lead all other industries in their adoption of Logistics Optimization. The following graphic provides insights into Location Intelligence use case by industry:
  • Executive Management and Business Intelligence Competency Centers (BICC) most prioritize Location Intelligence applications that have built-in or native geocoding. Enterprises are looking at how built-in or native geocoding can scale across their Location Intelligence use cases and broader BI strategy with Executive Management taking the lead on achieving this goal. Automated geocoding support and street-level geocoding support are also a high priority to Executive Management. Marketing/Sales lead all other departments in their interest in geofencing/reverse geofencing, indicating enterprises are beginning to use these geocoding features to achieve greater accuracy in their marketing and selling strategies. It’s interesting to note that geofencing/reverse geofencing has progressed from R&D in previous studies to Marketing/Sales putting the highest priority on it today. Dresner’s research team interprets the shift to customer-facing strategies being an indicator of broader enterprise adoption for geofencing/reverse geofencing.
  • 61% of organizations say Google integration is essential to their Location Intelligence strategies. Google continues to dominate organizations’ roadmaps as the integration of choice for adding more GIS data to Location Intelligence strategies. ESRI is the second choice with 45% of organizations naming it as an integration requirement. Database extensions (30%) are the next most cited, followed by OpenStreetMap (20%). All other choices are requirements at less than 20% of organizations.
%d bloggers like this: