Skip to content
Advertisements

Posts tagged ‘Cloud Computing’

How Artificial Intelligence Is Revolutionizing Enterprise Software In 2017

future-of-artificial-intelligence-and-big-data

  • 81% of IT leaders are currently investing in or planning to invest in Artificial Intelligence (AI).
  • Cowen predicts AI will drive user productivity to materially higher levels, with Microsoft at the forefront.
  • Digital Marketing/Marketing Automation, Salesforce Automation (CRM) and Data Analytics are the top three areas ripe for AI/ML adoption.
  • According to angel.co, there are 2,200+ Artificial Intelligence start-ups, and well over 50% have emerged in just the last two years.
  • Cowen sees Salesforce ($CRM), Adobe ($ADBE) and ServiceNow ($NOW) as well-positioned to deliver and monetize new AI-based application services.

These and many other fascinating insights are from the Cowen and Company Multi-Sector Equity Research study, Artificial Intelligence: Entering A Golden Age For Data Science (142 pp., PDF, client access reqd). The study is based on interviews with 146 leading AI researchers, entrepreneurs and VC executives globally who are involved in the field of artificial intelligence and related technologies. Please see the Appendix of the study for a thorough overview of the methodology. This study isn’t representative of global AI, data engineering and machine learning (ML) adoption trends. It does, however, provide a glimpse into the current and future direction of AI, data engineering, and machine learning.  Cowen finds the market is still nascent, with CIOs eager to invest in new AI-related initiatives. Time-to-market, customer messaging, product positioning and the value proposition of AI solutions will be critical factors for winning over new project investments.

Key takeaways from the study include the following:

  • Digital Marketing/Marketing Automation, Salesforce Automation (CRM) and Data Analytics are the top three areas ripe for AI/ML adoption. Customer self-service, Enterprise Resource Planning (ERP), Human Resource Management (HRM) and E-Commerce are additional areas that have upside potential for AI/ML adoption. The following graphic provides an overview of the areas in software that Cowen found the greater potential for AI/ML investment.

Artificial Intelligence: Entering A Golden Age For Data Science

  • 81% of IT leaders are currently investing in or planning to invest in Artificial Intelligence (AI). Based on the study, CIOs have a new mandate to integrate AI into IT technology stacks. The study found that 43% are evaluating and doing a Proof of Concept (POC) and 38% are already live and planning to invest more.  The following graphic provides an overview of company readiness for machine learning and AI projects.

How Artificial Intelligence Is Revolutionizing Enterprise Software In 2017

  • Market forecasts vary, but all consistently predict explosive growth. IDC predicts that the Cognitive Systems and AI market (including hardware & services) will grow from $8B in 2016 to $47B in 2020, attaining a Compound Annual Growth Rate (CAGR) of 55%. This forecast includes $18B in software applications, $5B in software platforms, and $24B in services and hardware. IBM claims that Cognitive Computing is a $2T market, including $200B in healthcare/life sciences alone. Tractica forecasts direct and indirect applications of AI software to grow from $1.4B in 2016 to $59.8B by 2025, a 52% CAGR.

Artificial Intelligence: Entering A Golden Age For Data Science

  • According to CBInsights, the number of financing transactions to AI start-ups increased 10x over the last six years, from 67 in 2011 to 698 in 2016. Accenture states that the total number of AI start-ups has increased 20-fold since 2011. The top verticals include FinTech, Healthcare, Transportation and Retail/e-Commerce. The following graphic provides an overview of the AI annual funding history from 2011 to 2016.

Artificial Intelligence: Entering A Golden Age For Data Science

  • Algorithmic trading, image recognition/tagging, and patient data processing are predicted to the b top AI uses cases by 2025. Tractica forecasts predictive maintenance and content distribution on social media will be the fourth and fifth highest revenue producing AI uses cases over the next eight years. The following graphic compares the top 10 uses cases by projected global revenue.

ai-use-cases

  • Machine Learning is predicted to generate the most revenue and is attracting the most venture capital investment in all areas of AI. Venture Scanner found that ML raised $3.5B to date (from 400+ companies), far ahead of the next category, Natural Language Processing, which has seen just over $1Bn raised to date (from 200+ companies). Venture Scanner believes that Machine Learning Applications and Machine Learning Platforms are two relatively early stage markets that stand to have some of the greatest market disruptions.

Artificial Intelligence: Entering A Golden Age For Data Science

  • Cowen predicts that an Intelligent App Stack will gain rapid adoption in enterprises as IT departments shift from system-of-record to system-of-intelligence apps, platforms, and priorities. The future of enterprise software is being defined by increasingly intelligent applications today, and this will accelerate in the future. Cowen predicts it will be commonplace for enterprise apps to have machine learning algorithms that can provide predictive insights across a broad base of scenarios encompassing a company’s entire value chain. The potential exists for enterprise apps to change selling and buying behavior, tailoring specific responses based on real-time data to optimize discounting, pricing, proposal and quoting decisions.

Artificial Intelligence: Entering A Golden Age For Data Science

  • According to angel.co, there are 2,200+ Artificial Intelligence start-ups, and well over 50% have emerged in just the last two years. Machine Learning-based Applications and Deep Learning Neural Networks are experiencing the largest and widest amount of investment attention in the enterprise.
  • Accenture leverages machine learning in 40% of active Analytics engagements, and nearly 80% of proposed Analytics opportunities today. Cowen found that Accenture’s view is that they are in the early stages of AI technology adoption with their enterprise clients.  Accenture sees the AI market growing exponentially, reaching $400B in spending by 2020. Their customers have moved on from piloting and testing AI to reinventing their business strategies and models.
Advertisements

How AWS And Azure Competing Is Improving Public Cloud Adoption

Global Cloud

  • Public Cloud spending is predicted to grow at quickly, attaining 16% year-over-year growth in 2017.
  • Cowen’s AWS segment model is predicting Revenue and EBITDA to grow 25% and 26.8% annually from 2017 to 2022.
  • Microsoft Azure is viewed as the platform that customers would most likely purchase or renew going forward (28% of total vs. AWS at 22%, GCP at 15%, and IBM at 10%).

These and many other fascinating insights are from Cowen’s study published this week, Public Cloud V: AWS And Azure Still Leading The Pack (58 pp., PDF, client access reqd.). Cowen partnered with Altman Vilandrie & Company to complete the study. The study relies on a survey sample of 551 respondents distributed across small, medium and enterprises who are using Public Cloud platforms and services today.  For purposes of the survey, small businesses have less than 500 employees, medium-sized businesses as 500 to 4,999 employees, and enterprises as more than 5,000 employees. The study provides insight on a range of topics including cloud spending trends, workload migration dynamics, and vendor positioning. Please see pages 5,6 & 7 for additional details regarding the methodology.

The more AWS and Azure compete to win customers, the greater the innovation and growth in public cloud adoption as the following key takeaways illustrate:

  • Existing Public Cloud customers predict spending will grow 16% year-over-year in 2017. Existing mid-market Public Cloud customers predict spending will increase 18% this year. SMBs who have already adopted Public Cloud predict a 17% increase in spending in 2017, and enterprises, 13%. Public Cloud providers are the most successful upselling and cross-selling mid-market companies this year as many are relying on the cloud to scale their global operations to support growth.

Public Cloud Spending, 2017

  • AWS dominates awareness levels with SMBs who have existing Public Cloud deployments, with Microsoft Azure the most known and considered in enterprises. Consistent with many other surveys of Public Cloud adoption, IBM SoftLayer scored better in enterprises than any other segment including SMBs (71% vs. 58%). Google Cloud Platform has its strongest awareness levels in SMBs, attributable to the adoption of their many cloud-based applications in this market segment. They trail AWS, Azure, and SoftLayer in the enterprise, however. Across all existing companies who have adopted Public Cloud, the majority are most aware of AWS and Microsoft Azure. The second graphic provides an overview of awareness across the entire respondent base.

test

  • Microsoft is the most-used Public Cloud and the most likely to be purchased or renewed by 28% of all respondents. While AWS is the most reviewed Public Cloud across all respondents, Microsoft Azure is the most used. When asked which Public Cloud provider they are likely to purchase or renew, the majority of respondents said Microsoft Azure (28%), followed by AWS (22%), Google Cloud Platform (15%) and IBM SoftLayer (10%). The following graphic compares awareness, reviewed and use levels by Public Cloud platform.

Comparative Analysis Of Most Used Public Cloud Provider

  • Only 37% of current Azure users expect to add or replace their Public Cloud provider, compared to 53% of current AWS users and 50% of GCP users. The study found that approximately 40% of respondents expect to add or replace their cloud provider in the next two years, compared to 43% who predicted that last year. Companies who have adopted Microsoft Azure are least likely to replace/add other vendors, as only 37% of current Azure users expect to add or replace, compared to 53% of current AWS users and 50% of GCP users.

substitute

  • AWS and Azure dominate all seven facets of user experience included in the survey. AWS has the best User Interface, API Complexity, and Reporting & Billing. Microsoft Azure leads all Public Cloud providers globally in the areas of Management & Monitoring, Software & Data Integration, Technical Support and Training &   Google Cloud Platform is 3rd on all seven facts of user experience.

user

  • 18% of workloads are supported by Public Cloud today with SMBs and mid-market companies slightly leading enterprises (16%). Overall, 38% of all workloads are supported with on-premise infrastructure and platforms, increasing to 43% for enterprises. The following graphic illustrates the percentage of workloads supported by each infrastructure type.

Infrastructure

  • 77% of existing Public Cloud adopters are either likely or very likely to add a SaaS workload in the next two years, led by mid-market companies (81%). SMBs (76%) and enterprises (73%) are also likely/very likely to add SaaS workloads in the next two years. The majority of these new SaaS workloads will be in the areas of Testing & Development, Web Hosting, and e-mail and communications.

Comparing

  • Cowen’s AWS segment model is predicting Revenue and EBITDA to have a five-year Compound Annual Growth Rate (CAGR) of 25% and 26.8% from 2017 to 2022. AWS Net Income is predicted to increase from $2.7B in 2017 to $8.2B in 2022, attaining a projected 24.5% CAGR from 2017 to 2022. Revenue is predicted to soar from an estimated $16.8B in 2017 to $51.5B in 2022, driving a 25% CAGR in the forecast period.

Roundup Of Cloud Computing Forecasts, 2017

  • Cloud computing is projected to increase from $67B in 2015 to $162B in 2020 attaining a compound annual growth rate (CAGR) of 19%.
  • Gartner predicts the worldwide public cloud services market will grow 18% in 2017 to $246.8B, up from $209.2B in 2016.
  • 74% of Tech Chief Financial Officers (CFOs) say cloud computing will have the most measurable impact on their business in 2017.

Cloud platforms are enabling new, complex business models and orchestrating more globally-based integration networks in 2017 than many analyst and advisory firms predicted. Combined with Cloud Services adoption increasing in the mid-tier and small & medium businesses (SMB), leading researchers including Forrester are adjusting their forecasts upward. The best check of any forecast is revenue.  Amazon’s latest quarterly results released two days ago show Amazon Web Services (AWS) attained 43% year-over-year growth, contributing 10% of consolidated revenue and 89% of consolidated operating income.

Additional key takeaways from the roundup include the following:

  • Wikibon is predicting enterprise cloud spending is growing at a 16% compound annual growth (CAGR) run rate between 2016 and 2026. The research firm also predicts that by 2022, Amazon Web Services (AWS) will reach $43B in revenue, and be 8.2% of all cloud spending. Source: Wikibon report preview: How big can Amazon Web Services get?
Wikibon Worldwide Enterprise IT Projection By Vendor Revenue

Wikibon Worldwide Enterprise IT Projection By Vendor Revenue

Rapid Growth of Cloud Computing, 2015–2020

Rapid Growth of Cloud Computing, 2015–2020

Worldwide Public Cloud Services Forecast (Millions of Dollars)

Worldwide Public Cloud Services Forecast (Millions of Dollars)

  • By the end of 2018, spending on IT-as-a-Service for data centers, software and services will be $547B. Deloitte Global predicts that procurement of IT technologies will accelerate in the next 2.5 years from $361B to $547B. At this pace, IT-as-a-Service will represent more than half of IT spending by the 2021/2022 timeframe. Source: Deloitte Technology, Media and Telecommunications Predictions, 2017 (PDF, 80 pp., no opt-in).
Deloitte IT-as-a-Service Forecast

Deloitte IT-as-a-Service Forecast

  • Total spending on IT infrastructure products (server, enterprise storage, and Ethernet switches) for deployment in cloud environments will increase 15.3% year over year in 2017 to $41.7B. IDC predicts that public cloud data centers will account for the majority of this spending ( 60.5%) while off-premises private cloud environments will represent 14.9% of spending. On-premises private clouds will account for 62.3% of spending on private cloud IT infrastructure and will grow 13.1% year over year in 2017. Source: Spending on IT Infrastructure for Public Cloud Deployments Will Return to Double-Digit Growth in 2017, According to IDC.
Worldwide Cloud IT Infrastructure Market Forecast

Worldwide Cloud IT Infrastructure Market Forecast

  • Platform-as-a-Service (PaaS) adoption is predicted to be the fastest-growing sector of cloud platforms according to KPMG, growing from 32% in 2017 to 56% adoption in 2020. Results from the 2016 Harvey Nash / KPMG CIO Survey indicate that cloud adoption is now mainstream and accelerating as enterprises shift data-intensive operations to the cloud.  Source: Journey to the Cloud, The Creative CIO Agenda, KPMG (PDF, no opt-in, 14 pp.)
Cloud investment by type today and in three years

Cloud investment by type today and in three years

AWS Segment Financial Comparison

AWS Segment Financial Comparison

  • In Q1, 2017 AWS generated 10% of consolidated revenue and 89% of consolidated operating income. Net sales increased 23% to $35.7 billion in the first quarter, compared with $29.1 billion in first quarter 2016. Source: Cloud Business Drives Amazon’s Profits.
Comparing AWS' Revenue and Income Contributions

Comparing AWS’ Revenue and Income Contributions

  • RightScale’s 2017 survey found that Microsoft Azure adoption surged from 26% to 43% with AWS adoption increasing from 56% to 59%. Overall Azure adoption grew from 20% to 34% percent of respondents to reduce the AWS lead, with Azure now reaching 60% of the market penetration of AWS. Google also increased adoption from 10% to 15%. AWS continues to lead in public cloud adoption (57% of respondents currently run applications in AWS), this number has stayed flat since both 2016 and 2015. Source: RightScale 2017 State of the Cloud Report (PDF, 38 pp., no opt-in)
Public Cloud Adoption, 2017 versus 2016

Public Cloud Adoption, 2017 versus 2016

  • Global Cloud IT market revenue is predicted to increase from $180B in 2015 to $390B in 2020, attaining a Compound Annual Growth Rate (CAGR) of 17%. In the same period, SaaS-based apps are predicted to grow at an 18% CAGR, and IaaS/PaaS is predicted to increase at a 27% CAGR. Source: Bain & Company research brief The Changing Faces of the Cloud (PDF, no opt-in).
60% of IT Market Growth Is Being Driven By The Cloud

60% of IT Market Growth Is Being Driven By The Cloud

  • 74% of Tech Chief Financial Officers (CFOs) say cloud computing will have the most measurable impact on their business in 2017. Additional technologies that will have a significant financial impact in 2017 include the Internet of Things, Artificial Intelligence (AI) (16%) and 3D printing and virtual reality (14% each). Source: 2017 BDO Technology Outlook Survey (PDF), no opt-in).
CFOs say cloud investments deliver the greatest measurable impact

CFOs say cloud investments deliver the greatest measurable impact

Cloud investments are fueling new job throughout Canada

Cloud investments are fueling new job throughout Canada

  • APIs are enabling persona-based user experiences in a diverse base of cloud enterprise As of today there are 17,422 APIs listed on the Programmable Web, with many enterprise cloud apps concentrating on subscription, distributed order management, and pricing workflows.  Sources: Bessemer Venture Partners State of the Cloud 2017 and 2017 Is Quickly Becoming The Year Of The API Economy. The following graphic from the latest Bessemer Venture Partners report illustrates how APIs are now the background of enterprise software.
APIs are fueling a revolution in cloud enterprise apps

APIs are fueling a revolution in cloud enterprise apps

Additional Resources:

Five Ways CPQ Is Revolutionizing Selling Today

CPQ, Salesforce CPQ, enosiX SAP to Salesforce Integration Configure-Price-Quote (CPQ) continues to be one of the hottest enterprise apps today, fueled by the relentless need all companies have to increase sales while delivering customized orders profitably and accurately. Here are a few of the many results CPQ strategies are delivering today:

  • Companies relying on CPQ are growing profit margins at a 57% greater rate year-over-year compared to non-adopters.
  • 89% improvement in turning Special Pricing Requests (SPRs) into sales by automating them using a cloud-based CPQ system.
  • 67% reduction in reworked orders at a leading specialty vehicle manufacturer due to quotes reflecting exactly what customers wanted to buy.
  • 23% improvement in upsell and cross-sell revenue by having the CPQ system intelligently recommend the optimal product or service that has the highest probability of purchase and best possible gross margin.
  • CPQ strategies excel when they are designed to reach challenging selling, pricing, revenue and operational performance goals versus automating existing selling workflows.

Another factor fueling CPQs’ rapid growth is how quickly results of a pilot can be measured and used for launching a successful company-wide launch.  Pilots often concentrate on quote creation time, quoting accuracy, sales cycle reduction, automating Special Pricing Requests (SPRs), up-sells and cross-sells, perfect order performance, margin improvements and best of all, winning new customers. These are the baseline metrics many companies use to measure their CPQ performance. Throughout 2017 these metrics across industries are accelerating. There is a revolution going on in selling today.

5 Ways CPQ Is Revolutionizing Selling Today

Cloud- and SaaS-based CPQ solutions are quicker to implement, easier to customize to customers’ requirements, and available 24/7 on any Internet-enabled device, anytime. Many are designed to integrate into Salesforce, further accelerating adoption seamlessly.  The following five factors are the primary catalysts revolutionizing selling today:

  1. Designing in excellent user experiences (UX) is the new normal for CPQ apps – CPQ vendors are competing with the quality of user experiences they deliver in 2017, moving beyond packing every feature possible into app releases. This is having a corresponding impact on adoption, increasing the number of sales representatives and entire teams who can get up and running fast with a new CPQ app. The net result is reduced sales cycles, growing pipelines, and more sales reps actively using CPQ apps to increase their selling effectiveness.
  2. Integrating with legacy CRM, ERP and pricing systems in real-time are using service-oriented frameworks gives sales teams what they need to close deals faster – Legacy CPQ systems in the past often had very precise field mappings to 3rd party legacy CRM, ERP and pricing systems. They were brittle and would break very easily, slowing down sales cycles and making sales reps resort to manually-based approaches from decades before. In 2017 there are service-oriented frameworks that make brittle, easily broken mappings thankfully an integration practice in the past. With a loosely coupled service framework, real-time integration between CRM and ERP systems can be quickly be implemented and sales teams can get out and close more deals. Leaders in the area include enosiX, who are enabling their customers’ sales forces to enter sales orders into SAP directly from Salesforce, saving valuable selling time and increasing order accuracy.
  3. Competing for deals using Artificial Intelligence (AI), machine learning and Intelligent Agents are force multipliers driving greater salesSalesforce’s Einstein is an example of the latest generation of AI applications that are enabling sales reps and teams to gain insights that weren’t available before. Combining customer data with these advanced predictive data analytics technologies yields insights into how selling strategies for different accounts can customize to specific prospect needs. Selling strategies are more effective and focused when AI, machine learning, and Intelligent Agents are designed in to guide quoting, pricing and product configuration in real-time.
  4. CPQ apps optimized for mobile devices are enabling sales reps to drastically reduce quote creation times, sales cycles and increase sales win rates – For many companies whose sales teams are in the field calling on accounts the majority of the time, mobile-based CPQ apps are how they get the majority of their work done. Salesforce’s Force.com is one of the leading platforms CPQ software companies are relying on to create mobile apps, further capitalizing on the already-established levels of familiarity sales teams have with the Salesforce platform.
  5. The vision many companies have of synchronizing multichannel and omnichannel selling as part of their CPQ strategies is now attainable – One of the greatest challenges of expanding sales channels is ensuring a consistently high-quality customer experience across each. With on-premise CPQ, CRM and ERP selling systems, this is very challenging as there are often multiple database systems supporting each. This is a breakout year for omnichannel selling as cloud-based CPQ systems and the platforms they are built on can securely scale across all selling channels a company chooses to launch. Being able to track which CPQ deals emanated from which marketing program, and which channels are the most effective in closing sales is now possible.

CIO’s Guide To The New Economics Of Real-Time Integration

CEOs’ decisions today to pursue digital-first strategies for greater revenue growth are defining their company’s competitive strengths in the future. CIOs and their teams are being challenged to drive a larger percentage of revenue growth in 2017 than ever before by providing IT-based insights daily.

  • Enabling faster revenue growth, improving products and replacing obsolete technologies are the top three CEO priorities have for CIOs in 2017.
  • 42% of CIOs say “digital first” is their company’s go-forward strategy for IT investments in 2017 and beyond.
  • 33% of CIOs consider revenue growth as their primary metric for measuring success with their digital business strategies.

The New Economics Of Real-Time Integration

IT teams are taking on the challenge by concentrating on those areas that can scale the quickest and deliver measurable revenue results. They’re finding that the integration approaches taken in the past don’t match the speed that customers, sales, suppliers and senior management need today. A key takeaway from CIOs’ initial efforts includes the finding that making small improvements in data latency can increase sales win rates in 90 days or less while improving cost controls.  Improving data latency is one of the key factors driving the new economics of real-time integration, which is defined below.

  • Integrations’ Inflection Point Has Arrived – Digital-first initiatives for defining new channel, selling and product strategies require more speed than batch-oriented integration can deliver. Customers now expect real-time response across all sales and support channels on a 24/7 basis. The pressure to drive greater revenue through digital channels and deliver a consistently great customer experience are forcing an inflection point of integration technologies today.
  • Batch-oriented approaches to integration fit well in an era of transaction-centric IT. Asynchronous, tightly-coupled, and relying on ETL for moving data around an enterprise network, these approaches were better suited for more predictable revenue strategies.  In contrast, going after new digital channels is unpredictable and requires real-time integration to deliver excellent customer experiences. Service-oriented frameworks that support synchronous data consumption and have low latency are emerging as a better choice for digital-first revenue strategies. Based on loosely-coupled integration points, these frameworks are capable of quickly adapting to new business requirements. Companies including enosiX are revolutionizing services-oriented frameworks by removing the roadblocks legacy integration approaches created.  The following graphic illustrates integrations’ inflection point and how past approaches to integration are giving way to more synchronous, loosely- coupled service-oriented frameworks capable of scaling faster to drive greater revenue.

  • And it’s fueling faster development cycles, reducing time-to-market and improving app and web services quality. The apps, web services, and APIs needed to launch a digital-first strategy don’t exist off-the-shelf, ready to be deployed for the majority of companies. Every company needs to create customizations to existing apps and web services, or create entirely new ones to support digital revenue strategies. Availability of real-time data through service-oriented frameworks is revolutionizing how apps, web services, and customizations get built. With real-time data designed in, it’s possible to test new apps across more use cases and ensure higher quality too.
  • While also enabling IT teams to exceed stakeholder expectations and their goals for digital-first strategies. Integrations’ inflection point is the most visible in how CIOs are now considered more responsible for revenue than ever before. From the initial revenue strategy definition through project managing apps and web services to delivery and producing revenue, CIOs and their teams who see themselves as business strategists excel in their roles. IT teams and the CIOs who lead them are seeing signs of integration’s inflection point every day. They’re seeing just how urgent the inflection point is, and how it’s redefining the economics of how they orchestrate systems together to attain revenue growth.  The insights and expertise CEOs, VPs of Channel Strategy, Marketing, Cloud & IT Infrastructure, and other senior management team members have needed to get quickly translated into apps, web services and digital first strategies that capitalize fast on new opportunities. Only through the use of service-oriented frameworks that can scale to support new revenue processes can any company compete in 2017 and beyond.

 

Business Intelligence And Analytics In The Cloud, 2017

  • 78% are planning to increase the use of cloud for BI and data management in the next twelve months.
  • 46% of organizations prefer public cloud platforms for cloud BI, analytics and data management deployments.
  • Cloud BI adoption increased in respondent companies from 29% to 43% from 2013 to 2016.
  • Almost half of organizations using cloud BI (46%) use a public cloud for BI and data management compared to less than a third (30%) for hybrid cloud and 24% for private cloud.

These and many other insights are from the BARC Research and Eckerson Group Study, BI and Data Management in the Cloud: Issues and Trends published January 2017 (39 pp., PDF, no opt-in). Business Application Research Center (BARC) is a research and consulting firm that concentrates on enterprise software including business intelligence (BI), analytics and data management. Eckerson Group is a research and consulting firm focused on serving the needs of business intelligence (BI) and analytic leaders in Fortune 2000 organizations worldwide. The study is based on interviews completed in September and October 2016. 370 respondents participated in the survey globally. Given the size of the sample, the results aren’t representative of the global BI and analytics user base. The study’s results provide an interesting glimpse into analytics and BI adoption today, however. For a description of the methodology, please see page 31 of the study.

Key insights from the study include the following:

  • Public cloud is the most preferred deployment platform for cloud BI and analytics, and the larger the organization toe more likely they are using private clouds. 46% of organizations selected public cloud platforms as their preferred infrastructure for supporting their BI, analytics, and data management initiatives in 2016. 30% are relying on a hybrid cloud platform and 24%, private clouds. With public cloud platforms becoming more commonplace in BI and analytics deployments, the need for greater PaaS- and IaaS-level orchestration becomes a priority. The larger the organization, the more likely they are using private clouds (33%). Companies with between 250 to 2,500 employees are the least likely to be using private clouds (16%).

grouped-bi-cloud-platform-graphic

  • Dashboard-based reporting (76%), ad-hoc analysis and exploration (57%) and dashboard authoring (55%) are the top three Cloud BI use cases. Respondents are most interested in adding advanced and predictive analytics (53%), operational planning and forecasting (44%), strategic planning and simulation (44%) in the next year. The following graphic compares primary use cases and planned investments in the next twelve months. SelectHub has created a useful Business Intelligence Tools Comparison here that provides insights into this area.

cloud-bi-use-cases

  • Power users dominate the use of cloud BI and analytics solutions, driving more complex use cases that include ad-hoc analysis (57%) and advanced report and dashboard creation (55%). Casual users are 20% of all cloud BI and analytics, with their most common use being for reporting and dashboards (76%). Customers and suppliers are an emerging group of cloud BI and analytics users as more respondent companies create self-service web-based apps to streamline external reporting.

cloud-bi-power-users

  • Data integration between cloud applications/databases (51%) and providing data warehouses and data marts (50%) are the two most common data management strategies in use to support BI and analytics solutions today. Respondent organizations are using the cloud to integration cloud applications with each other and with on-premises applications (46%).  The study also found that as more organizations move to the cloud, there’s a corresponding need to support hybrid cloud architectures. Cloud-based data warehouses are primarily being built to support net new applications versus existing apps on-premise. Data integration is essential for the ongoing operations of cloud-based and on-premise ERP systems. A useful comparison of ERP systems can be found here.

cloud-data-integration

  • Data integration between on-premises and cloud applications dominates use cases across all company sizes, with 48% of enterprises leading in adoption. Enterprises are also prioritizing providing data warehouses and data marts (48%), the pre-processing of data (38%) and data integration between cloud applications and databases (38%). The smaller a company is the more critical data integration becomes. 63% of small companies with less than 250 employees are prioritizing data integration between cloud applications and databases (63%).

use-cases-of-cloud-management-by-company-size

  • Tools for data exploration (visual discovery) adopted grew the fastest in the last three years, increasing from 20% adoption in 2013 to 49% in 2016. BI tools increased slightly from 55% to 62% and BI servers dropped from 56% to 51%. Approximately one in five respondent organizations (22%) added analytical applications in 2016.

bi-tools-growth

  • The main reasons for adopting cloud BI and analytics differ by size of the company, with cost (57%) being the most important for mid-sized businesses between 250 to 2.5K employees. Consistent with previous studies, small companies’ main reason for adopting cloud BI and analytics include flexibility (46%), reduced maintenance of hardware and software (43%), and cost (38%). Enterprises with more than 2.5K employees are adopting cloud BI and analytics for greater scalability (48%), cost (40%) and reduced maintenance of hardware and software (38%). The following graphic compares the most important reason for adopting cloud BI, analytics and data management by the size of the company.

most-important-reason-for-adopting-cloud-bi-and-data-management

2017 Is Quickly Becoming The Year Of The API Economy

Shanghai is a high-rise buildings, the rapid development of the city.

This year more CIOs will have their bonuses tied to how many new business models they help create with existing and planned IT platforms than ever before. This trend will accelerate over the next three years. CIOs and IT staffs need to start thinking about how they can become business strategists first, technicians and enablers of IT second. CIOs must create and launch new business models faster to keep their companies competitive. APIs are the fuel helping to make this happen.

The Urgency To Create New Business Models Is Driving API Proliferation

APIs (Application Programmer Interfaces) are the components that enable diverse platforms, apps, and systems to connect and share data with each other.  Think of APIs as a set of software modules, tools, and protocols that enable two or more platforms, systems and most commonly, applications to communicate with each other and initiate tasks or processes. APIs are essential for defining and customizing Graphical User Interfaces (GUIs) too. Cloud platform providers all have extensive APIs defined and work in close collaboration with development partners to fine-tune app performance using them. Amazon Web Services, Facebook, Google, Marketo, Salesforce, SAP Hybris, Twitter and thousands of other companies have APIs available. As of today, the Programmable Web lists 16,590 APIs in its database.

Removing The Hype By Benchmarking API Maturity

Senior management teams need to de-hype the entire issue of APIs as part of their broader business strategies before jumping in to create some of their own. In reality, many APIs are still nascent, emerging from a regular series of test and development cycles with developer partners. APIs also vary drastically regarding stability, reliability, and quality. The majority are aggregations of binary, relatively straightforward commands as they are the easiest to create.

Customer needs are driving the most efficient API development programs. Having a strong focus on the customer and being accountable for how the API’s quality turns out is essential. Customer-centric development is also forcing APIs to scale up faster, providing contextual intelligence and insight over completing simple tasks. These customer-centric APIs are driving greater maturity into development cycles, enabling quicker maturity of API code bases across the board. The following Cloud Platform API Maturity Model provides the context of how APIs must progress to provide greater contextual intelligence to enable prescriptive and cognitive workflows.

api-fuel

What’s Driving 2017’s Ascent To Year Of The API Economy 
The factors driving 2017 to be the year of the API economy are larger than any pending IPO, recent acquisition or merger. They’re the shifts occurring in how APIs are consumed, integrated into platforms and enriched with greater potential to provide contextual intelligence for customers.  The following factors are contributing to APIs rapidly maturing in 2017:

  • Organizations and their IT teams are starting to focus more on unique API consumption strategies first. Being able to orchestrate different APIs together and enable entirely new business processes and models fast is what matters most. Orchestrating APIs and create real-time integration is a challenging task, however, especially between on-premise, legacy systems and cloud platforms and apps. A noteworthy company to watch in this area is enosiX who has proven expertise in providing real-time integration between Salesforce and SAP enterprise systems.
  • APIs are becoming enablers of omnichannel selling and service business models quickly. The most complex APIs are being built within B2B companies who have the goal of providing a contextually intelligent real-time experience across all the channels they sell through. This is a daunting task and one that would be more efficient if each channel’s unique needs to the persona level were taken into account first.
  • The best APIs are starting to reflect requirements to the persona and customer journey level. Individual persona needs must drive API development, and this encompasses the device(s) they use, apps they regularly work with and the workflows across all apps on a platform. When an app or platform provider has anticipated the persona needs and charted customer journeys, it shows in the APIs created. The APIs reflect customer preferences much more clearly and are more efficient in delivering great apps as a result. Providing an API code base that has these features accelerates new app development and opens entirely new channels for selling.

Bottom Line: APIs are most valuable for creating new business models and streamlining selling strategies across all channels. The greatest revenue potential they provide is removing barriers to growing revenue by integrating platforms and apps so organizations can quickly launch new business models and scale fast.

Five Reasons Why Every CIO Needs An Integration Roadmap In 2017

The difference between CIOs who lead and those caught in never-ending reactionary cycles is often a strategic IT plan and integration roadmap. It’s the CIOs who take the time to create and pursue an integration roadmap that has the greatest chance of breaking out of always reacting to IT projects and leading them instead. That’s because the majority of inbound requests center on data, reports or analysis only deliverable by integrating two or more systems together.

Five Ways Integration Roadmaps Are Putting CIOs Back In Control

Based on conversations with CIOs across a variety of industries including manufacturing, distribution, aerospace, financial services, and retailing, five factors emerged that led to creating integration roadmaps and getting in control of IT spending and priorities. I’ve summarized these five factors below:

  1. Integration roadmaps are proving to be an effective catalyst for driving purpose-optimized integration strategies, reducing middleware costs in the process. CIOs who create and continually improve their integration roadmaps are prioritizing purpose-optimized integration strategies to more efficiently scale global operations. Creating real-time integration links between SAP and Salesforce is one example of how CIOs are using purpose-driven integration to reduce customer response times for information, improving customer satisfaction in the process.  Enabling real-time, bi-directional data updates without requiring complex middleware coding and mapping of data is a challenging task, and innovative startups including enosiX are excelling in this area today.
  1. Defining a path for reducing ETL spending and dependence on logs to troubleshoot errors and measure performance.Reducing their dependence on ETL is giving CIOs and their teams much more flexibility in how they manage IT It is also freeing up system analysts to work on new projects instead of troubleshooting integration issues. With no automated error handling or recovery mechanisms, many CIOs are gradually phasing ETL out for more modern integration technologies that eliminate error logs altogether.
  1. Investing in the latest technologies that enable business process and application logic is making IT more responsive, helping them break out of a bureaucratic reputation. When I asked CIOs about the best way to increase responsiveness to internal customers, they wanted integration technologies capable of scaling across the back office and selling systems to make them more responsive. By having integration technologies that enable business process and application logic, the time-consuming, and often error-filled, the task of enabling new business processes manually goes away. And, when IT can react faster, their bureaucratic reputation is also on the way out too.
  1. Choosing to reduce and eliminate hand-built adapters and connectors from their IT infrastructures to free up support funds and time on urgent IT project needs today. One large-scale industrial equipment manufacturer has a staff of software developers and engineers who do nothing but keep adapters and connectors written in ABAP running across their ERP, Manufacturing Execution Systems, quality management, and supply chain systems. With production centers in the Midwestern US, China, and Europe, the ABAP team is always busy but never innovating. They are just ‘keeping the lights on.’ Having an integration roadmap is going to get this manufacturer out of the situation they are in today, which is draining dollars and time from IT.
  1. Move closer to quantifying the value IT delivers by showing how an integration roadmap provides support for cutting maintenance costs, consolidating apps and introducing new platforms. The ROI of IT often hinges on how effective CIOs are at reducing costs and still delivering a median or average level of service. By having a plan in place to attack integration challenges and costs, CIOs can immediately prioritize steps to improve service, reduce costs, and attain department and corporate goals.

Originally published on the enosiX blog, Five Reasons Why Every CIO Needs An Integration Roadmap In 2017. 

5 Ways Integration Is Enabling The Factory Of The Future

  • factory-of-the-future-report93% of global product leaders say that predictive maintenance combined with real-time equipment monitoring enabled by integration is a must-have for factory planning today.
  • 75% of global product leaders plan to implement factory of the future initiatives and programs in the next five years or less, starting with Industry 4.0
  • 67% of automotive executives expect that new technologies enabled by real-time integration will enable their teams to reach and exceed lean management and continuous improvement goals starting this year and accelerating through 2030.

Boston Consulting Group’s recent article, The Factory of the Future provides insights into a recent global survey the consulting firm conducted of more than 750 manufacturing product leaders from leading companies in three industrial sectors: automotive (which includes suppliers and original equipment manufacturers, or OEMs), engineered products, and process industries. The survey’s objective is to define the vision for the factory of the future in 2030.  Determining long-term benefits and the roadmap to implementation are also goals of the study Boston Consulting Group (BCG) and its research partner, the Laboratory for Machine Tools and Production Engineering at RWTH Aachen University, achieved. The Factory of the Future is a vision for how manufacturers should enhance production by making improvements in three dimensions: plant structure, plant digitization, and plant processes.

5 Ways Integration Fuels The Factory Of The Future’s Growth

Real-time integration based on intelligent objects that connect diverse enterprise systems including SAP, Salesforce and others is the foundation that manufacturing companies must adopt to excel in their Factory of the Future efforts. These real-time objects illustrate the future of Application Programmer Interfaces (API).  APIs that will fuel and drive the Factory of the Future will enrich each real-time integration points across manufacturing networks. Intelligent Objects pervasively used today are the precursors to the most valuable APIs that will enable Factories of the Future tomorrow. With APIs continually improving and gaining the capability to provide insight and intelligence, the essential role of real-time integration in all factories of the future becomes clear.

The following are the five ways integration is enabling the Factory of the Future today:

  1. Real-time integration enables the value chains supporting the Factories of the Future to continually accelerate, excel and improve with additional insight that drives future growth strategies. Bringing greater intelligence into each integration point across the value chains supporting the Factories of the Future leads to new technologies delivering greater lean management benefits. Real-time integration will deliver strong benefits in the areas of lean management, predictive maintenance, modular line setups, and the orchestration and collaboration of smart robots.

factory-of-the-future-1

  1. The Implementation Roadmap for the Factory of the Future shows how critical real-time integration is to the Factory of the Future’s vision being attained. Multidirectional layouts, modular line setups, sustainable production, the orchestration of smart and collaborative robotics and attainment of big data and analytics plans all are dependent on real-time integration. The following graphic from the study illustrates just how central integration is to the optimizing of plant structure and plant digitization.

factory-of-the-future-2

  1. By integrating large-scale enterprise systems including those from SAP, Salesforce and others with legacy, 3rd party and homegrown systems, every area of production quality will improve. The most urgent need global manufacturers have is finding new ways to improve product, process and service quality without raising costs. Improving the quality of these three dimensions makes any manufacturer more trusted and successful in selling next-generation products.  By aggregating data using real-time integration so that Big Data and advanced analytics can be used to find new patterns, some of the world’s most well-known manufacturers are excelling on product quality. To produce cylinder heads at its plant in Untertürkheim, Germany, Mercedes-Benz uses predictive analytics to examine more than 600 parameters that influence quality. Mercedes-Benz is an early adopter of using Big Data and advanced analytics to improve quality management and bring high precision to engineering. Bosch has implemented software that analyzes data about its production of fuel injectors in real time. The software monitors process adherence and recognizes trends. It automatically transmits information about deviations to operators, allowing them to improve the process accordingly.
  1. Real-time integration across and within manufacturing systems enables multi-directional layouts of production workflows. The Audi R8 manufacturing facility in Heilbronn, Germany, does not have a fixed conveyor so the teams there has greater multidirectional flexibility in building customized vehicles.  Real-time integration across the Audi factory floor is essential to provide R8 production teams with the specifics of how they can best collaborate and deliver the highest quality vehicles in the shortest amount of time. Real-time integration is enabling driverless transport systems, guided by a laser scanner and radio frequency identification technology in the floor, which moves the car bodies through the assembly process. These systems enable assembly layout changes quickly with no impact on existing production. Enabling real-time integration often involves extensive field mapping between different systems, which is a lengthy and error-prone process. Integration technology provider enosiX has developed a unique, real-time integration technology that obsoletes the need for field mapping and supports bi-directional data updates.
  1. Enabling the Factory of the Future’s production operations to flex in response to rapidly changing customer requirements is entirely dependent on real-time, reliable integration of production and customer-facing systems. The implications of the study on the future of manufacturing underscore just how critical it is for manufacturers to be agile enough to create entirely new business models while gaining insight and intelligence into how they can continually improve lean manufacturing. When real-time integration unifies a value chain for any manufacturer, their speed, scale and ability to simplify the complex processes required to serve customers turns into a formidable competitive advantage.

 

2017 Is The Year Integration Enables Industry 4.0 Growth

  • industry-40-landscape35% of companies adopting Industry 4.0 predict revenue gains over 20% in the next five years.
  • Data analytics and digital trust are the foundations of Industry 4.0.
  • Cost-sensitive industries including semiconductors, electronics, and oil and gas are the most focused on adopting Industry 4.0, with 80% of companies in these industries saying it is one of their top priorities.

The recent article by Boston Consulting Group (BCG), Sprinting To Value In Industry 4.0, provides insights into how real-time integration between enterprise systems is an essential catalyst for Industry 4.0 growth. Industry 4.0 focuses on the end-to-end digitization of all physical assets and integration into digital ecosystems with value chain partners encompassing a broad spectrum of technologies. BCG surveyed 380 US-based manufacturing executives and managers at companies representing a wide range of sizes in various industries to complete the study.

Industry 4.0 Is  At An Inflection Point Today 

Having attained initial results from Industry 4.0 initiatives, many manufacturers are moving forward with the advanced analytics and Big Data-related projects that are based on real-time integration between CRM, ERP, 3rd party and legacy systems. A recent Price Waterhouse Coopers (PwC) study of Industry 4.0 adoption, Industry 4.0: Building The Digital Enterprise (PDF, no opt-in, 36 pp.) found that 72% of manufacturing enterprises predict their use of data analytics will substantially improve customer relationships and customer intelligence along the product life cycle. Real-time integration enables manufacturers to more effectively serve their customers, communicate with suppliers, and manage distribution channels. Of the many innovative start-ups taking on the complex challenges of integrating cloud and on-premise systems to streamline revenue-generating business processes, enosiX shows potential to bridge legacy ERP and cloud-based CRM systems quickly and deliver results.

There are many more potential benefits to adopting Industry 4.0 for those enterprises who choose to create and continually strengthen real-time integration links across the global operations. Recent research completed by Boston Consulting Group and PwC highlight several of them below:

  • Manufacturers expect to gain the greatest value from Industry 4.0 by reducing manufacturing costs (47%), improving product quality (43%) and attaining operations agility (42%). 89% of all manufacturers see an opportunity to use Industry 4.0 to improve manufacturing productivity. Reducing supply chain costs (37%), enabling product innovation (33%) and attaining faster time-to-market (31%) are the next level of benefits manufacturers expect to attain. The following graphic provides an analysis of where manufacturers see Industry 4.0 having the greatest impact on their organizations.

 industry-40-image-1

  • Manufacturers are gaining the greatest value from Industry 4.0 by creating pilot projects that create flexible, agile real-time platforms supporting new business models with real-time integration. Industry 4.0’s focus on enabling end-to-end digitization of all physical assets and integration into digital ecosystems relies on real-time integration to succeed. For manufacturers in cost-sensitive industries, the urgency of translating the vision of digital transformation into results is key to their future growth. The more competitively intense an industry, the more essential real-time integration

industry-40-image-2

  • Investing in greater digitization and support for enterprise-wide integration is predicted to increase 118% by 2020 in support of Industry 4.0. 33% of manufacturers surveyed report they have a high level of digitization today, projected to increase to 72% by 2020. The leading areas of these investments include vertical value chain integration (72%), product development and engineering (71%), and customer access including sales channels and marketing (68%).
  • New product development and optimizing existing products and services are the greatest areas of growth potential for analytics and Big Data using Industry 4.0 technologies and integration strategies through 2020. Industry 4.0 is revolutionizing the use of analytics and manufacturing intelligence, setting the foundation for greater optimization of overall business and control, better manufacturing, and operations planning, greater optimization of logistics and more efficient maintenance of production assets and machinery. By better orchestrating these strategic areas, manufacturers are going to be able to attain levels of accuracy and responsiveness to customers not achievable before.
  • Globally, manufacturing enterprises expect to gain an additional 2.9% in digital revenues per year through 2020, with digitizing their existing product portfolios (47%) leading all other strategies, further underscoring the need for real-time integration. Introducing an entirely new digital product portfolio is the second most common strategy (44%) followed by creating and offering new digital services to external customers (42%). Just over a third (38%) plan to create and sell big data analytics services to external customers.

 

%d bloggers like this: