Skip to content

Posts tagged ‘Analytics’

Seven Ways Microsoft Redefined Azure For The Enterprise And Emerged A Leader

  • cloud startupsAs of Q2, 2016 Microsoft Azure has achieved 100% year-over-year revenue growth and now has the 2nd largest market share of the Cloud Infrastructure Services market according to Synergy Research.
  • Microsoft’s FY16 Q4 earnings show that Azure attained 102% revenue growth in the latest fiscal year and computing usage more than doubling year-over-year.
  • 451 Research predicts critical enterprise workload categories including data, analytics, and business applications will more than double from 7% to 16% for data workloads and 4% to 9% for business applications.
  • Cloud-first workload deployments in enterprises are becoming more common with 38% of respondents to a recent 451Research survey stating their enterprises are prioritizing cloud over on-premise.

451 Research’s latest study of cloud computing adoption in the enterprise, The Voice of the Enterprise: Cloud Transformation – Workloads and Key Projects provides insights into how enterprises are changing their adoption of public, private and hybrid cloud for specific workloads and applications. The research was conducted in May and June 2016 with more than 1,200 IT professionals worldwide. The study illustrates how quickly enterprises are adopting cloud-first deployment strategies to accelerate time-to-market of new apps while reducing IT costs and launch new business models that are by nature cloud-intensive. Add to this the need all enterprises have to forecast and track cloud usage, costs and virtual machine (VM) usage and value, and it becomes clear why Amazon Web Services (AWS) and Microsoft Azure are now leaders in the enterprise. The following graphic from Synergy Research Group’s latest study of the Cloud Infrastructure Services provides a comparison of AWS, Microsoft Azure, IBM, Google, and others.

Cloud Infrastructure Services

Seven Ways Microsoft Is Redefining Azure For The Enterprise

Being able to innovate faster by building, deploying and managing applications globally on a single cloud platform is what many enterprises are after today. And with over 100 potential apps on their cloud roadmaps, development teams are evaluating cloud platforms based on their potential contributions to new app development and business models first.

AWS and Microsoft Azure haven proven their ability to support new app development and deployment and are the two most-evaluated cloud platforms with dev teams I’ve talked with today. Of the two, Microsoft Azure is gaining momentum in the enterprise.

Here are the seven ways Microsoft is making this happen:

  • Re-orienting Microsoft Azure Cloud Services strategies so enterprise accounts can be collaborators in new app creation. Only Microsoft is coming at selling Cloud Services in the enterprise from the standpoint of how they can help do what senior management teams at their customers want most, which is make their app roadmap a reality. AWS is excellent at ISV and developer support, setting a standard in this area.
  • Giving enterprises the option of using existing relational SQL databases, noSQL data stores, and analytics services when building new cloud apps. All four dominant cloud platforms (AWS, Azure, Google, and IBM) support architectures, frameworks, tools and programming languages that enable varying levels of compatibility with databases, data stores, and analytics. Enterprises that have a significant amount of their legacy app inventory in .NET are choosing Azure for cloud app development. Microsoft’s support for Node.js, PHP, Python and other development languages is at parity with other cloud platforms. Why Microsoft Azure is winning in this area is the designed-in support for legacy Microsoft architectures that enterprises standardized their IT infrastructure on years before. Microsoft is selling a migration strategy here and is providing the APIs, web services, and programming tools to enable enterprises to deliver cloud app roadmaps faster as a result. Like AWS, Microsoft also has created a global development community that is developing and launching apps specifically aimed at enterprise cloud migration.  Due to all of these factors, both AWS and Microsoft are often considered more open cloud platforms by enterprises than others. In contrast, Salesforce platforms are becoming viewed as proprietary, charging premium prices at renewal time. An example of this strategy is the extra 20% Salesforce charges for Lightning experience at renewal time according to Gartner in their recent report, Salesforce Lightning Sales Cloud and Service Cloud Unilaterally Replaced Older Editions; Negotiate Now to Avoid Price Increases and Shelfware Published 31 May 2016, written by analysts Jo Liversidge, Adnan Zijadic.
  • Simplifying cloud usage monitoring, consolidated views of cloud fees and costs including cost predictions and working with enterprises to create greater cloud standardization and automation. AWS’ extensive partner community has solutions that address each of these areas, and AWS’ roadmap reflects this is a core focus of current and future development. The AWS platform has standardization and automation as design objectives for the platform. Enterprises evaluating Azure are running pilots to test the Azure Usage API, which allows subscribing services to pull usage data. This API supports reporting to the hourly level, resource metadata information, and supports Showback and Chargeback models. Azure deployments in production and pilots I’ve seen are using the API to build web services and dashboards to measure and predict usage and costs.
  • Openly addressing Total Cost of Ownership (TCO) concerns and providing APIs and Web services to avoid vendor lock-in. The question of data independence and TCO dominates sustainability and expansion of all cloud decisions. From the CIOs, CFOs and design teams I’ve spoken with, Microsoft and Amazon are providing enterprises assistance in defining long-term cost models and are willing to pass along the savings from economies of scale achieved on their platforms. Microsoft Azure is also accelerating in the enterprise due to the pervasive adoption of the many cloud-based subscriptions of Office365, which enables enterprises to begin moving their workloads to the cloud.
  • Having customer, channel, and services all on a single, unified global platform to gain greater insights into customers and deliver new apps faster. Without exception, every enterprise I’ve spoken with regarding their cloud platform strategy has multichannel and omnichannel apps on their roadmap. Streamlining and simplifying the customer experience and providing them with real-time responsiveness drive the use cases of the new apps under development today. Salesforce has been successful using their platform to replace legacy CRM systems and build the largest community of CRM and sell-side partners globally today.
  • Enabling enterprise cloud platforms and apps to globally scale. Nearly every enterprise looking at cloud initiatives today needs a global strategy and scale. From a leading telecom provider based in Russia looking to scale throughout Asia to financial services firms in London looking to address Brexit issues, each of these firms’ cloud apps roadmaps is based on global scalability and regional requirements. Microsoft has 108 data centers globally, and AWS operates 35 Availability Zones within 13 geographic Regions around the world, with 9 more Availability Zones and 4 more Regions coming online throughout the next year. To expand globally, Salesforce chose AWS as their preferred cloud infrastructure provider. Salesforce is not putting their IOT and earlier Heroku apps on Amazon. Salesforces’ decision to standardize on AWS for global expansion and Microsoft’s globally distributed data centers show that these two platforms have achieved global scale.
  • Enterprises are demanding more control over their security infrastructure, network, data protection, identity and access control strategies, and are looking for cloud platforms that provide that flexibility. Designing, deploying and maintaining enterprise cloud security models is one of the most challenging aspects of standardizing on a cloud platform. AWS, Azure, Google and IBM all are prioritizing research and development (R&D) spending in this area. Of the enterprises I’ve spoken with, there is an urgent need for being able to securely connect virtual machines (VMs) within a cloud instance to on-premise data centers. AWS, Azure, Google, and IBM can all protect VMs and their network traffic from on-premise to cloud locations. AWS and Azure are competitive to the other two cloud platforms in this area and have enterprises running millions of VMs concurrently in this configuration and often use that as a proof point to new customers evaluating their platforms.

Bottom line: Amazon AWS and Microsoft Azure are the first cloud platforms proving they can scale globally to support enterprises’ vision of world-class cloud app portfolio development.

Sources:

451 Research: The Voice of the Enterprise: Cloud Transformation – Workloads and Key Projects

Gartner Magic Quadrant for Cloud Infrastructure as a Service, Worldwide 2016 Reprint

Microsoft Earnings Release FY16 Q4 – Azure revenue grows 102% year-over-year

Synergy Research Group’s latest study of the Cloud Infrastructure Services

 

Roundup Of Analytics, Big Data & BI Forecasts And Market Estimates, 2016

  • World map technologyBig Data & business analytics software worldwide revenues will grow from nearly $122B in 2015 to more than $187B in 2019, an increase of more than 50% over the five-year forecast period.
  • The market for prescriptive analytics software is estimated to grow from approximately $415M in 2014 to $1.1B in 2019, attaining a 22% CAGR.
  • By 2020, predictive and prescriptive analytics will attract 40% of enterprises’ net new investment in business intelligence and analytics.

Making enterprises more customer-centric, sharpening focus on key initiatives that lead to entering new markets and creating new business models, and improving operational performance are three dominant factors driving analytics, Big Data, and business intelligence (BI) investments today. Unleashing the insights hidden in unstructured data is providing enterprises with the potential to compete and improve in areas they had limited visibility into before. Examples of these areas include the complexity of B2B selling and service relationships,  healthcare services, and maintenance, repair, and overhaul (MRO) of complex machinery.

Presented below are a roundup of recent analytics and big data forecasts and market estimates:

  • The global big data market will grow from $18.3B in 2014 to $92.2B by 2026, representing a compound annual growth rate of 14.4 percent. Wikibon predicts significant growth in all four sub-segments of big data software through 2026. Data management (14% CAGR), core technologies such as Hadoop, Spark and streaming analytics (24% CAGR), databases (18% CAGR) and big data applications, analytics and tools (23% CAGR) are the four fastest growing sub-segments according to Wikibon. Source: Wikibon forecasts Big Data market to hit $92.2B by 2026.

Wikibon big data forecast 2016

  • In 2015, the Global Analytics and Business Intelligence applications market grew 4% to approach nearly $11.6B in license, maintenance and subscription revenues with SAP maintaining market leadership. SAP led the marketing with 10% market share and $1.2B in Analytics and Business Intelligence (BI) product revenues, riding on a 23% jump in license, maintenance, and subscription revenues. SAS Institute was No. 2 achieving 9% share; IBM was the third at 8%, and Oracle and Microsoft were fourth and fifth place with 7% and 5%, respectively. Source: Apps Run The World: Top 10 Analytics and BI Software Vendors and Market Forecast 2015-2020.

analytics market shares

IDC FutureScape

  • The Total Data market is expected to nearly double in size, growing from $69.6B in revenue in 2015 to $132.3B in 2020. The specific market segments included in 451 Research’s analysis are operational databases, analytic databases, reporting and analytics, data management, performance management, event/stream processing, distributed data grid/cache, Hadoop, and search-based data platforms and analytics. Source: Total Data market expected to reach $132bn by 2020; 451 Research, June 14, 2016.

Worldwide total revenue by segment

overall adoption of big data

  • Improving customer relationships (55%) and making the business more data-focused (53%) are the top two business goals or objectives driving investments in data-driven initiatives today. 78% of enterprises agree that collection and analysis of Big Data have the potential to change fundamentally the way they do business over the next 1 to 3 years. Source: IDG Enterprise 2016 Data & Analytics Research, July 5, 2016.

Data Helps Customer Focused Organizations

  • Venture capital (VC) investment in Big Data accelerated quickly at the beginning of the year with DataDog ($94M), BloomReach ($56M), Qubole ($30M), PlaceIQ ($25M) and others receiving funding. Big Data startups received $6.64B in venture capital investment in 2015, 11% of total tech VC.  M&A activity has remained moderate (FirstMark noted 35 acquisitions since their latest landscape was published last year). Source: Matt Turck’s blog post, Is Big Data Still a Thing? (The 2016 Big Data Landscape).

big data landscape

  • IDC forecasts global spending on cognitive systems will reach nearly $31.3 billion in 2019 with a five-year compound annual growth rate (CAGR) of 55%. More than 40% of all cognitive systems spending throughout the forecast will go to software, which includes both cognitive applications (i.e., text and rich media analytics, tagging, searching, machine learning, categorization, clustering, hypothesis generation, question answering, visualization, filtering, alerting, and navigation). Also included in the forecasts are cognitive software platforms, which enable the development of intelligent, advisory, and cognitively enabled solutions.  Source:  Worldwide Spending on Cognitive Systems Forecast to Soar to More Than $31 Billion in 2019, According to a New IDC Spending Guide.
  • Big Data Analytics & Hadoop Market accounted for $8.48B in 2015 and is expected to reach $99.31B by 2022 growing at a CAGR of 42.1% from 2015 to 2022. The rise of big data analytics and rapid growth in consumer data capture and taxonomy techniques are a few of the many factors fueling market growth. Source: Stratistics Market Research Consulting (PDF, opt-in, payment reqd).

Additional sources of market information: 

Analytics Trends 2016 The Next Evolution, Deloitte.

Big data analytics, Ericsson White Paper Uen 288 23-3211 Rev B | October 2015

Big Data and the Intelligence Economy in Canada Big Data: Big Opportunities to Create Business Value, EMC.

The Forrester Wave™: Big Data Hadoop Distributions, Q1 2016

The Forrester Wave™: Big Data Hadoop Cloud Solutions, Q2 2016

The Forrester Wave™: Big Data Text Analytics Platforms, Q2 2016

The Forrester Wave™: Big Data Streaming Analytics, Q1 2016

The Forrester Wave™: Customer Analytics Solutions, Q1 2016

From Big Data to Better Decisions: The ultimate guide to business intelligence today (Domo)

Gartner Hype Cycle for Business Intelligence and Analytics, 2015

IBM: Extracting business value from the 4 V’s of big data

IDC Worldwide Big Data Technology and Services 2012 – 2015 Forecast

Opportunities in Telecom Sector: Arising from Big Data. Deloitte, November 2015

Who will win as Finance doubles down on analytics?

5 Ways Brexit Is Accelerating AWS And Public Cloud Adoption

  • London sykline duskDeutsche Bank estimates AWS derives about 15% of its total revenue mix or has attained a $1.5B revenue run rate in Europe.
  • AWS is now approximately 6x the size of Microsoft Azure globally according to Deutsche Bank.

These and other insights are from the research note published earlier this month by Deutsche Bank Markets Research titled AWS/Cloud Adoption in Europe and the Brexit Impact written by Karl Keirstead, Alex Tout, Ross Sandler, Taylor McGinnis and Jobin Mathew.  The research note is based on discussions the research team had with 20 Amazon Web Services (AWS) customers and partners at the recent AWS user conference held in London earlier this month, combined with their accumulated research on public cloud adoption globally.

These are the five ways Brexit will accelerate AWS and public cloud adoption:

  • The proliferation of European-based data centers is bringing public cloud stability to regions experiencing political instability. AWS currently has active regions in Dublin and Frankfurt, with the former often being used by AWS’ European customers due to the broader base of services offered there. An AWS Region is a physical geographic location where there is a cluster of data centers. Each region is made up of isolated locations known as availability zones. AWS is adding a third European Union (EU) region in the UK with a go-live date of late 2016 or early 2017. Microsoft has 2 of its 26 global regions in Europe, with two more planned in the UK.  Google’s Cloud Platform (GCP) has just one region active in Europe. The following Data Center Map provides an overview of data centers AWS, Microsoft Azure and GCP have in Europe today and planned for the future.

Data Center Map

  • Brexit is making data sovereignty king. European-based enterprises have long been cautious about using cloud platforms to store their many forms of data. Brexit is accelerating the needs European enterprises have for greater control over their data, especially those based in the UK.  Amazon’s planned third EU region based in London scheduled to go live in late 2016 or early 2017 is well-timed to capitalize on this trend.
  • Up-front costs of utilizing AWS are much lower and increasingly trusted relative to more expensive on-premise  IT platforms. Brexit is having the immediate effect of slowing down sales cycles for managed hosting, enterprise-wide hardware and software maintenance agreements. The research team found that the uncertainty of just how significant the economic impact Brexit will have on the European economies is making companies tighten capital expense (CAPEX) budgets and trim expensive maintenance agreements.  UK enterprises are reverting to OPEX spending that is already budgeted.
  • CEOs are pushing CIOs to get out of high-cost hardware and on-premise software agreements to better predict operating costs faster thanks to Brexit. The continual pressure on CIOs to reduce the high hardware and software maintenance costs is accelerating thanks to Brexit. Because no one can quantify with precision just how Brexit will impact European economies, CEOs, and senior management teams want to minimize downside risk now. Because of this, the cloud is becoming a more viable option according to Deutsche Bank. One reseller said that public cloud computing platforms are a great answer to a recession, and their clients see Brexit as a catalyst to move more workloads to the cloud.
  • Brexit will impact AWS Enterprise Discount Program (EDP) revenues, forcing a greater focus on incentives for low-end and mid-tier services. Deutsche Bank Markets Research team reports that AWS has this special program in place for its very largest customers. Under an EDP, AWS will give price discounts to large customers that commit to a full year (or more) and pay upfront, in many cases with minimum volume increases. One AWS partner told Deutsche Bank that they’re aware of one EDP payment of $25 million. In the event of a recession in Europe, it’s possible that such payments could be at risk. These market dynamics will drive AWS to promote further low- and mid-tier services to attract new business to balance out these larger deals.

Machine Learning Is Redefining The Enterprise In 2016

machine learning imageBottom line: Machine learning is providing the needed algorithms, applications, and frameworks to bring greater predictive accuracy and value to enterprises’ data, leading to diverse company-wide strategies succeeding faster and more profitably than before.

Industries Where Machine Learning Is Making An Impact  

The good news for businesses is that all the data they have been saving for years can now be turned into a competitive advantage and lead to strategic goals being accomplished. Revenue teams are using machine learning to optimize promotions, compensation and rebates drive the desired behavior across selling channels. Predicting propensity to buy across all channels, making personalized recommendations to customers, forecasting long-term customer loyalty and anticipating potential credit risks of suppliers and buyers are Figure 1 provides an overview of machine learning applications by industry.

machine learning industries

Source: Tata Consultancy Services, Using Big Data for Machine Learning Analytics in Manufacturing – TCS

Machine Learning Is Revolutionizing Sales and Marketing  

Unlike advanced analytics techniques that seek out causality first, machine learning techniques are designed to seek out opportunities to optimize decisions based on the predictive value of large-scale data sets. And increasingly data sets are comprised of structured and unstructured data, with the global proliferation of social networks fueling the growth of the latter type of data.  Machine learning is proving to be efficient at handling predictive tasks including defining which behaviors have the highest propensity to drive desired sales and marketing outcomes. Businesses eager to compete and win more customers are applying machine learning to sales and marketing challenges first.  In the MIT Sloan Management Review article, Sales Gets a Machine-Learning Makeover the Accenture Institute for High Performance shared the results of a recent survey of enterprises with at least $500M in sales that are targeting higher sales growth with machine learning. Key takeaways from their study results include the following:

  • 76% say they are targeting higher sales growth with machine learning. Gaining greater predictive accuracy by creating and optimizing propensity models to guide up-sell and cross-sell is where machine learning is making contributions to omnichannel selling strategies today.
  • At least 40% of companies surveyed are already using machine learning to improve sales and marketing performance. Two out of five companies have already implemented machine learning in sales and marketing.
  • 38% credited machine learning for improvements in sales performance metrics. Metrics the study tracked include new leads, upsells, and sales cycle times by a factor of 2 or more while another 41% created improvements by a factor of 5 or more.
  • Several European banks are increasing new product sales by 10% while reducing churn 20%. A recent McKinsey study found that a dozen European banks are replacing statistical modeling techniques with machine learning. The banks are also increasing customer satisfaction scores and customer lifetime value as well.

Why Machine Learning Adoption Is Accelerating

Machine learning’s ability to scale across the broad spectrum of contract management, customer service, finance, legal, sales, quote-to-cash, quality, pricing and production challenges enterprises face is attributable to its ability to continually learn and improve. Machine learning algorithms are iterative in nature, continually learning and seeking to optimize outcomes.  Every time a miscalculation is made, machine learning algorithms correct the error and begin another iteration of the data analysis. These calculations happen in milliseconds which makes machine learning exceptionally efficient at optimizing decisions and predicting outcomes.
The economics of cloud computing, cloud storage, the proliferation of sensors driving Internet of Things (IoT) connected devices growth, pervasive use of mobile devices that consume gigabytes of data in minutes are a few of the several factors accelerating machine learning adoption. Add to these the many challenges of creating context in search engines and the complicated problems companies face in optimizing operations while predicting most likely outcomes, and the perfect conditions exist for machine learning to proliferate.
The following are the key factors enabling machine learning growth today:

  • Exponential data growth with unstructured data being over 80% of the data an enterprise relies on to make decisions daily. Demand forecasts, CRM and ERP transaction data, transportation costs, barcode and inventory management data, historical pricing, service and support costs and accounting standard costing are just a few of the many sources of structured data enterprises make decisions with today.   The exponential growth of unstructured data that includes social media, e-mail records, call logs, customer service and support records, Internet of Things sensing data, competitor and partner pricing and supply chain tracking data frequently has predictive patterns enterprises are completely missing out on today. Enterprises looking to become competitive leaders are going after the insights in these unstructured data sources and turning them into a competitive advantage with machine learning.
  • The Internet of Things (IoT) networks, embedded systems and devices are generating real-time data that is ideal for further optimizing supply chain networks and increasing demand forecast predictive As IoT platforms, systems, applications and sensors permeate value chains of businesses globally, there is an exponential growth of data generated. The availability and intrinsic value of these large-scale datasets are an impetus further driving machine learning adoption.
  • Generating massive data sets through synthetic means including extrapolation and projection of existing historical data to create realistic simulated data. From weather forecasting to optimizing a supply chain network using advanced simulation techniques that generate terabytes of data, the ability to fine-tune forecasts and attain greater optimizing is also driving machine learning adoption. Simulated data sets of product launch and selling strategies is a nascent application today and one that shows promise in developing propensity models that predict purchase levels.
  • The economics of digital storage and cloud computing are combining to put infrastructure costs into freefall, making machine learning more affordable for all businesses. Online storage and public cloud instances can be purchased literally in minutes online with a credit card. Migrating legacy data off of databases where their accessibility is limited compared to cloud platforms is becoming more commonplace as greatest trust in secure cloud storage increases. For many small businesses who lack IT departments, the Cloud provides a scalable, secure platform for managing their data across diverse geographic locations.

Further reading

Companies Are Reimagining Business Processes with Algorithms. Harvard Business Review. February 8, 2016.  H. James Wilson, Allan Alter, Prashant Shukla. Source: https://hbr.org/2016/02/companies-are-reimagining-business-processes-with-algorithms

Domingos, P. (2012). A Few Useful Things to Know About Machine Learning. Communications Of The ACM, 55(10), 78-87.

Pyle, D., & San José, C. (2015). An executive’s guide to machine learning. Mckinsey Quarterly, (3), 44-53. Link: http://www.mckinsey.com/industries/high-tech/our-insights/an-executives-guide-to-machine-learning

Sales Gets A Machine-Learning Makeover.  MIT Sloan Management Review, May 17, 2016. H. James Wilson, Narendra Mulani, Allan Alter. Source: http://sloanreview.mit.edu/article/sales-gets-a-machine-learning-makeover/Sebag, M. (2014).

The Next Wave Of Enterprise Software Powered By Machine Learning.  TechCrunch, July 27, 2015. http://techcrunch.com/2015/07/27/the-next-wave-of-enterprise-software-powered-by-machine-learning/

What Every Manager Should Know About Machine Learning, Harvard Business Review,  July 7, 2015.  Link: https://hbr.org/2015/07/what-every-manager-should-know-about-machine-learning

What Is Machine Learning? Making The Complex Simple.  Mike Ferguson.  IBM Big Data & Analytics Hub. Link: http://www.ibmbigdatahub.com/blog/what-machine-learning

World Economic Forum White Paper Digital Transformation of Industries: In collaboration with Accenture Digital Enterprise, January 2016. Link: http://reports.weforum.org/digital-transformation-of-industries/wp-content/blogs.dir/94/mp/files/pages/files/digital-enterprise-narrative-final-january-2016.pdf

Yan, J., Zhang, C., Zha, H., Gong, M., Sun, C., Huang, J., & Yang, X. (2015, February). On machine learning towards predictive sales pipeline analytics. In Twenty-Ninth AAAI Conference on Artificial Intelligence.  Link: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9444/9488

5 Insights & Predictions On Disruptive Tech From KPMG’s 2015 Global Innovation Survey

  • cloud computing survey 215% of U.S. tech leaders see biotech/digital health/healthcare IT as the most disruptive consumer-driven technology in the next three years.
  • 13% of U.S. tech leaders predict data and analytics will be the most disruptive enterprise technology in three years.
  • Global tech leaders predict cloud computing (11%), mobile platforms and apps (9%), Internet of Things (IoT)/machine-to-machine (M2M) (9%) and data and analytics (9%) will be the most disruptive technologies over the next three years.

These and many other insights are from the fourth annual 2015 Global Technology Innovation Survey released via webcast by KPMG last month. KPMG surveyed 832 technology industry business leaders globally, with the majority of being C-level executives (87%). Respondents were selected from a broad spectrum of businesses including tech industry startups, mid- and large-scale enterprises, angel investors and venture capital firms. For an in-depth explanation of the survey methodology, please see slides 6 and 7 of the webinar presentation. The goals of the survey include spotting disruptive technologies, identifying tech innovation barriers and opportunities, and tracking emerging tech innovation hubs.

The five insights and predictions from the report include the following:

  • Global tech leaders predict cloud computing (11%), mobile platforms and apps (9%), Internet of Things (IoT)/M2M (9%) and data and analytics (9%) will be the most disruptive technologies over the next three years.  U.S. tech leaders predict biotech/digital health/healthcare IT (15%), data and analytics (14%) and cloud computing (14%) will be the three most disruptive technologies over the next three years.  Chinese tech leaders predict artificial intelligence/cognitive computing (15%) will be the most disruptive technology impacting the global business-to-consumer (B2C) marketplace.

tech driving consumer technologies

  • The three most disruptive technologies predicted to drive business transformation in enterprises over the next three years in the U.S. include cloud computing (13%), data and analytics (13%), and cyber security (10%). Japanese tech leaders predict artificial intelligence/cognitive computing will have the greatest effect (23%), and 14% of Chinese tech leaders predict the Internet of Things/M2M (14%) will have the greatest impact on business transformation in their country.  The following table compares global tech leader’s predictions of which technologies will disrupt enterprises the most and drive business transformation over the next three years.

business transformation

  • Improving business efficiencies/higher productivity, and faster innovation cycles (both 20%) are top benefits tech leaders globally are pursuing with IoT strategies. The point was made on the webinar that in Asia, consumers are driving greater adoption of IoT-based devices to a richer contextual customer experience. Greatest challenges globally to adopting IoT is technology complexity (22%), lack of experience in the new technology or business model (16%), and both displacement of the existing tech roadmap and security (both 13%).       

IoT in the enteprrise

  • Analytics are most often adopted to gain faster innovation cycles (25%), improved business efficiencies and higher productivity (17%) and more effective R&D (13%).  The greatest challenges are technology complexity (20%) and lack of experience in the new technology or business model (19%),

data and analytics KPMG Survey

  • Tech leaders predict the greatest potential revenue growth for IoT in the next three years is in consumer and retail markets (22%).  IoT/M2M is also expected to see significant revenue growth in technology industries (13%), aerospace and defense (10%), and education (9%).  The following graphic compares tech leader’s predictions of the industries with the greatest potential revenue growth (or monetization potential) in the next three years.

Emerging Tech IoT monetization

 

Sources:

Tech Innovation Global Webcast presenting the findings of KPMG’s 2015 Global Technology Innovation Survey

KPMG Survey: Top Disruptive Consumer Tech – AI In China, Healthtech In U.S., 3-D Printing In EMEA

 

Salesforce On The State Of Analytics, 2015

  • analytics predictions 2015Between 2015 and 2020, the number of data sources analyzed by enterprises will jump 83%.
  • 9 out of 10 enterprise leaders believe analytics is absolutely essential or very important to their overall business strategies and operational outcomes.
  • 54% of marketers say marketing analytics is absolutely critical or very important to creating a cohesive customer journey.
  • High performing enterprises are 5.4x more likely than underperformers to primarily use analytics tools to gain strategic insights from Big Data.

These and many other interesting insights are from the 2015 State of Analytics study from Salesforce Research. Salesforce conducted the study in mid-2015, generating 2,091 responses from business leaders from enterprises (not limited to Salesforce customers). Geographies included in the study include the U.S., Canada, Brazil, U.K., France, Germany, Japan, and Australia.  While Salesforce is a leading provider of analytics, the report strives to deliver useful insights beyond just endorsing their product direction.

10 insights and predictions on the state of analytics include the following:

  • Between 2015 and 2020, the number of data sources analyzed will jump 83%. Salesforce Research found that the number of data sources actively analyzed by businesses has grown just 20% in the last five years. This is projected to accelerate rapidly, attaining a compound annual growth rate of 120% in the 10-year forecast period. High performing enterprises will be relying on a projected 50 different data sources by 2020, leading all performance categories tracked in the study.

data explosion

  • Relying on manual processes to get all the data in one view (53%) is one of the greatest challenges enterprises face today. Additional factors driving enterprises to integrate more data sources into their analytics applications include finding that too much data is left unanalyzed (53%), spending too much time updating spreadsheets (52%), and analysis is performance by business analysts, not end users of the data (50%).  All of these factors and those shown in the graphic below form the catalyst that is driving greater legacy, 3rd party and broader enterprise data integration into analytics applications.

lack of automation

  • 9 out of 10 enterprise leaders believe analytics is absolutely essential or very important to their overall business strategies and operational outcomes. In addition, 84% of high performers are projecting that the importance of analytics will increase substantially or somewhat in the next two years. 65% of all business leaders surveyed are predicting that the importance of analytics will increase substantially or somewhat in the next two years.

analytics is critical to driving business strategy

  • High performing enterprises are 4.6x more likely than underperformers to agree that data is driving their business decisions. In addition, 60% of high performing enterprises’ leaders agree with the statement that their organizations have moved beyond numbers keeping score to data driving business decisions. Salesforce Research also found that 43% of high performers rely on empirical data, developing hypotheses and then experimenting and observing the outcomes before making a decision.

data drives decisions

  • Driving operational efficiencies and facilitating growth (both 37%) are the two areas enterprises are initially focused on with analytics today.  Once analytics apps are delivering insights and are part of daily workflows, enterprises expand their use into optimizing operational processes (35%), identifying new revenue streams (33%) and predicting customer behavior (32%). The following graphic provides a comparison of the top ten use cases.

analytics every corner

  • High performance enterprises consistently analyze more than 17 different kinds of data across their analytics apps.  In contrast, underperforming organizations only analyze 10 different data sources, and moderate performers, 15. The following graphic provides an overview of the top ten most-used sources of data.

companies track a wide variety of data

  • High performers are 3.5x more likely than underperformers to extensively use mobile reporting tools to analyze data wherever they are. 55% of high performing enterprises are more likely to be extensively using mobile reporting tools to analyze data.  The following graphic compares mobile analytics adoption across high, medium and low performing enterprises.

top teams tap mobile analytics

  • Speed of deployment (68%), ease of use for business users (65%) and self-service and data discovery tools (61%) are the three top three priorities leaders place on selecting new analytics apps.  Mobile capabilities to explore and share data (56%) and cloud deployment (54%) are the fourth and fifth factors leaders mentioned.  The following graphic compares the decision factors that go into selecting an analytics app.

decision factor analytics app

  • Industries who have the greater analytics adoption today (over 50% of users active on apps and tools) include high tech (36%) and financial services (32%). Automotive (30%) and media & communications (30%) also have attained significant adoption.

adoption

  • High performing enterprises are 5.4x more likely than underperformers to primarily use analytics tools to gain strategic insights from Big Data. Leaders in high performance enterprises see the value of Big Data (76%) to a much greater extent than their lower performing counterparts (14%).   High performing enterprises are 3.1x more likely than underperformers to be confident in ability to manage data from internal systems, customers, and third parties.

Businesses Adopting Big Data, Cloud & Mobility Grow 53% Faster Than Peers

  • London sykline duskOrchestrating big data, cloud and mobility strategies leads to 53% greater growth than peers not adopting these technologies.
  • 73% of midmarket companies say the complexity of their stored data requires big data analytics apps and tools to better gain insights from.
  • 41% of midmarket companies are using big data to better target marketing efforts.
  •  54% of midmarket companies’ security budgets are invested in security plans versus reacting to threats.

These and many other insights are from Dell’s second annual Global Technology Adoption Index (GTAI 2015) released last week in collaboration with TNS Research. The Global Technology Adoption Index surveyed IT and business decision makers of mid-market organizations across 11 countries, interviewing 2,900 IT and business decision makers representing businesses with 100 to 4,999 employees.

The purpose of the index is to understand how business users perceive, plan for and utilize four key technologies: cloud, mobility, security and big data. Dell released the first wave of its results this week and will be publishing several additional chapters throughout 2016. You can download Chapter 1 of the study here (PDF, no opt-in, 18 pp.).

Key take-aways from the study include the following:

  • Orchestrating big data, cloud and mobility strategies leads to 53% greater growth than peers not adopting these technologies. Midmarket organizations adopting big data alone have the potential to grow 50% more than comparable organizations. Effective use of Bring Your Own Device (BYOD) mobility strategies has the potential to increase growth by 53% over laggards or late adopters..

orchestrating tech for greater growth

  • 73% of North American organizations believe the volume and complexity of their data requires big data analytics apps and tools.  This is up from 54% in 2014, indicating midmarket organizations are concentrating on how to get more value from the massive data stores many have accumulated.  This same group of organizations believe they are getting more value out of big data this year (69%) compared to last year (64%).  Top outcomes of using big data include better targeting of marketing efforts (41%), optimization of ad spending (37%), and optimization of social media marketing (37%).

top outcomes

  • 54% of an organization’s security budget is invested in security plans versus reacting to threats. Dell & TNS Research discovered that midmarket organizations both in North America and Western Europe are relying on security to enable new devices or drive competitive advantage.  In North America, taking a more strategic approach to security has increased from 25% in 2014 to 35% today.  In Western Europe, the percentage of companies taking a more strategic view of security has increased from 26% in 2014 to 30% this year.

security strategic

  • IT infrastructure costs to support big data initiatives (29%) and costs related to securing the data (28%) are the two greatest barriers to big data adoption. For cloud adoption, costs and security are the two biggest barriers in midmarket organizations as is shown in the graphic below.

security costs

  • Cloud use by midmarket companies in France increased 12% in the last twelve months, leading all nations in the survey.  Of the 11 countries surveyed, France had the greatest increase in cloud adoption within midmarket companies.  French businesses increased their adoption of cloud applications and platforms from 70% in 2014 to 82% in 2015.

Sources: Dell Study Reveals Companies Investing in Cloud, Mobility, Security and Big Data Are Growing More Than 50 Percent Faster Than Laggards. October 13, 2015

 

2015 Big Data Market Update

big data market udpate

  • 42.6% of all big data apps developed for manufacturing are being created by enterprises today.
  • 38.2% of all big data and advanced analytics apps in use today are in customer-facing departments including marketing, sales, and customer service.
  • 33.2% of all big data and advanced analytics developers are concentrating on the software & computing industry.
  • 19.2% of big data app developers say quality of data is the biggest problem they consistently face when building new apps.

These and other insights are from the recently published report Big Data and Advanced Analytics Survey 2015, Volume I by Evans Data Corporation. The survey is based on 444 in-depth interviews with developers who are currently working with analytics and databases and are both currently working on and planning big data and advanced analytics projects. The survey’s results provide a strategic view of the attitudes, adoption patterns and intentions of developers in relation to big data and analytics. You can more on the methodology of the report here.

Key take-aways from the report include the following:

  • Software & computing (18%), financial (11.6%), manufacturing (10.9%) and retail (9.8%) industries have the highest percentage of programmers creating big data and analytics applications today.  Additional industries where big data app development is active and growing include entertainment (7.7%), telecommunications (7.5%), utilities & energy (6.6%) and healthcare (4.6%). The following graphic provides an overview of the industries addressed.

industries addressed

  • Capturing more information than traditional database practices (22.60%), capturing and analyzing unstructured data (21.10%) and the potential for visualizing or analyzing data differently (20.70%) are the three top use cases driving app development today.  Evans Data found that capturing more information than traditional database practices allow increased 6% since last year, making it the top use case in 2015. The following graphic provides the distribution of responses by use cases from the developers surveyed.

top three use cases

  • Total size of the data being processed (40.8%), complex, unstructured nature of the data (38.1%) and the need for real-time data analysis (17.7%) are the top three factors driving big data adoption over traditional database solutions.  Evans Data found that the size and complexity of structured and unstructured data is the catalyst that gets enterprises moving on the journey to big data adoption. The ability to gain greater insights into their data with descriptive, predictive and contextually-driven analytics is the fuel that keeps big data adoption moving forward in all companies.

reasons to move to big data

  • 33.2% of all big data and advanced analytics developers are concentrating on the software & computing industry. Of these developers, 36.7% are working in organizations of 101 to 1,000 employees, 32.9% are in enterprises of 1,000+ employees, and 30.1% are in organizations of 100 employees or less. 42.6% of all big data software development in manufacturing begins in enterprises (1K+ employees).

Industries being targeted by big data by company size

 

  • Enterprises competing in the software & computing industry (17.5%), manufacturing (15.8%) and financial industry (14%) are investing the heaviest in big data and analytics app development. Overall, 32% of big data and analytics projects are custom-designed and produced by system integrators and value-added resellers (SI, VAR). 70% of big data and advanced analytics apps for manufacturing are created by enterprise and system integrator/value-added reseller (SI/VAR) development teams.  The following graphic provides an overview of industries targeted by big data, segmented by developer segment.

industries being targeted by big data by developer segment

 

  • Sales and customer data (9.6%), IT-based data analysis (9.4%), informatics (8.7%) and financial transactions (8.4%) are the most common big data sets app developers are working with today.  In addition marketing, system management, production and shop floor data, and web & social media-generated data are also included.  Evans Data found that informatics data sets grew the fastest in the last six months, and scientific computing is now competing with transaction processing systems as a dominant data set developers rely on to create new apps.

kinds of information that feed your company's data stores

  • Marketing departments have quickly become the most common users of big data and advanced analytics apps (14.4%) followed by IT (13.3%) and Research & Development (13%). Evans Data asked developers which departments in their organizations are putting big data and advanced analytics apps to use, regardless of where they were created.  38.2% of all big data use in organizations today are in customer-facing departments including marketing, sales, and customer service.

departments using analytics and big data

  • Availability of relevant tools (10.9%), storage costs (10.2%) and siloed business, IT, and analytics/data science teams (10.0%) are the top three barriers developers face in building new apps. It’s interesting to note that compliance and having to transition from legacy systems did not score higher in the survey, as these two areas are inordinately more complex in more regulated, older industries.  For big data and advanced analytics to accelerate across manufacturing and financial industries, compliance and legacy systems integration barriers will need to first be addressed.

three barriers

  • Quality of data (19.2%), relevance of data being acquired (13.5%), volume of data being processed (12.6%) and ability to adequately visualize big data (11.7%) are the four biggest problem areas faced by big data developers today.  Additional problem areas include the volume of data in storage (10.5%), ability to gain insight from big data (10.1%) and the high rate of data acquisition (7.6%).  The remainder of problem areas are shown in the graphic below.   

biggest problem

  • Providing real-time correlation and anomaly detection of diverse security data (29.9%) and high-speed querying of security intelligence data (28.1%) are the two most critical areas vendors can assist developers with today. Big data and analytics app developers are looking to vendors to also provide more effective security algorithms for various use case scenarios (17.6%), flexible big data analytics across structured and unstructured data (14.2%) and more useful graphical front-end tools for visualizing and exploring big data (5.1%).

vendor provide

 

10 Ways Analytics Are Accelerating Digital Manufacturing

  • 42% of manufacturers say big data and analytics as their highest priority in 2015.
  • 56% of power distribution providers rank big data and analytics within their top three priorities for 2015.
  • 61% of aviation companies consider big data and analytics their highest priority this year.

Bottom line: Digital manufacturing strategies are gaining ground as manufacturers adopt big data and analytics to improve operational effectiveness, time-to-market, new product development and increase product quality and reliability.

Analytics Are Fueling Digital Manufacturing Growth

Big data and analytics adoption by manufacturers is the first step many are taking to create a galvanized, intelligent digital thread that unifies every aspect of their value chains. For aerospace manufacturers whose supply chains are exceptionally complex, big data and analytics are revolutionizing value chains starting with suppliers and progressing through all operations.

The majority of manufacturers are relying on analytics to improve order accuracy, shipment & cycle time performance, and product quality. Those excelling at digital manufacturing strategies are gaining additional analytical insights into how they can make decisions more accurately, quicker and with lower potential costs and risks.

The manufacturing industry generates more data than any other sector of the global economy on a consistent basis.   The more complex a given manufacturers’ operations are, the more valuable the insights gained from big data and analytics. The following comparison of big data analytics priorities by industry from a recent speech given by Jeff Immelt, CEO and President of General Electric illustrates this point:

analytics customer survey

Source: GE Minds and Machines Presentation, Jeff Immelt, CEO & President, General Electric.

10 Ways Analytics Are Accelerating Digital Manufacturing 

The ten ways analytics is accelerating digital manufacturing adoption globally include the following:

  • Providing real-time operator intelligence (70%), remote monitoring and diagnostics (66%), and condition-based maintenance (59%) are the three most valuable areas for analytics GE customers mentioned in a recent survey. GE’s industrial customers are looking to tailor pre-built applications that can deliver the eight different functional areas shown in the graphic below.  Manufacturers are looking to asset performance management as an integral part of their digital thread’s analytics and insight.

industrial customer perspective

Source: GE Minds and Machines Presentation, Jeff Immelt, CEO & President, General Electric.

  • Using data modeling to improve production workflows is improving Earnings Before Interest & Taxes (EBIT) by 55% for a chemical manufacturer.  Using analytics and data modeling to make more accurate,  efficient decisions encompassing making or buying ingredients, choosing to substitute an ingredient or not, optimizing equipment usage and/or reliability and gaining incremental sales through increased production capacity is leading to a significant improvement in EBIT for a leading chemical manufacturer on a consistent basis.  The following graphic provides insights into the contributions of each factor in improving EBIT performance.

EBIT Growth

Source: Taming manufacturing complexity with advanced analytics. McKinsey & Company by Patrick Briest, Valerio Dilda, and Ken Somers February 2015. 

  • Planning-execution integration in production centers and real-time production integration are two areas where analytics are having the greatest impact on manufacturers’ operating expenses (OPEX). When analytics are integrated as part of a digital manufacturing strategy, supply chains benefit when Web-EDI (Electronic Data Interchange) and real-time order conformation are implemented and analyzed for continual improvement.

Digital initaitves impact

Source: Operational Excellence through Digital in Manufacturing Industries. Capgemini Consulting.

  • Optimization tools (56%), demand forecasting (53%), integrated business planning (48%) and supplier collaboration & risk analytics (46%) are being rapidly adopted by manufacturers today, setting the foundation for digital manufacturing growth.  Deloitte recently interviewed supply chain executives regarding the thirteen fastest-moving technical capacities they are using today and expect to use in the future. The following graphic provides an overview of supply chain capabilities current in use and what percent of each they expect to use in the future.

use of supply chain capabilities

Source: Supply Chain Talent of the Future Findings from the third annual supply chain survey. Deloitte.  2015.

  • Analytics is integral to making the vision of Industrie 4.0 a reality. Industrie 4.0 is a German government initiative that promotes automation of the manufacturing industry with the goal of developing Smart Factories. Analytics is extensively used in manufacturing centers who are in the process of reengineering their entire operations to attain Industrie 4.0 compliance. Manufacturing value chains in highly regulated industries that rely on German suppliers and manufacturers are also relying on analytics extensively to guide their Industrie 4.0 journey. A recent Deloitte study of Industrie 4.0 adoption found that research and development (43%) will see the greatest transformational contribution from Industry 4.0.

Industry 4.0 areas

Source: Industry 4.0: Challenges and solutions for the digital transformation and use of exponential technologies. Deloitte Consulting, 2015

  • Analytics is enabling manufacturers to also scale real time cloud-based operational intelligence, condition-based monitoring, monitoring & diagnostics and asset lifecycle management across global manufacturing centers.  Capturing, aggregating, analyzing and taking action on analytics across all production centers using the GE Predix Cloud will also accelerate digital manufacturing growth over time.  Integrating analytics, industrial and sensor data into a scalable series of data models and apps delivered as a Platform-as-a-Service (PaaS), GE will make this service commercially available in 2016.  The following graphic illustrates how complex manufacturers could use Predix Cloud to improve operational efficiency and quality.

horizontal capability controls

Source: Jeff Immelt Presentation on Pivot Strategy, December 16, 2014

  • Analytics is providing greater insights into product, process, program and service quality, forcing manufacturers to revamp existing production centers and make them more efficient.  Gaining greater insight into which production centers and factories are delivering the highest quality products and why is now possible.  The vision of unifying quality across an enterprise quality management and compliance (ECQM) framework is now a reality, driving greater digital manufacturing growth as a result. The following graphic from Tableau is an example of a manufacturing quality dashboard.

Mfg quality dashboard

Source: Manufacturing Analytics Quality Dashboard

  • Increasing production yields through the use of more effective supplier quality management and bill of material (BOM) planning integrated within production processes.  Analytics is extensively being used today for supplier audits, supplier quality management and traceability. Capitalizing on the full value of these analytics is a strong catalyst for manufacturers to move closer to digitizing their operations.
  • Using analytics to predict machine failures before they occur reduces downtime, production costs and increase customer satisfaction.  In highly regulated industries production equipment is periodically audited and reviewed for conformance to specific standards.  Integrating even the simplest sensor into production equipment can deliver valuable insights into what factors cause it to fail.  Analytics are providing Failure Mode and Effects Analysis (FMEA) in real-time today, providing manufacturers with a glimpse into which equipment and machinery will most likely fail when. Knowing this can save literally millions of dollars in lost production time.
  • Adopting Pareto Analysis to continually improve schedule, quality and cost performance to the cell or production center level is driving digital manufacturing adoption.  Determining which factors are enhancing or reducing product, process and program quality is now possible using advanced manufacturing analytics. Differentiating between the many symptoms of a quality problem and its root cause is now becoming possible, especially for companies pursuing digital manufacturing strategies.

Additional sources of information on the impact of analytics on digital manufacturing:

 

2015 Roundup Of Analytics, Big Data & Business Intelligence Forecasts And Market Estimates

  • NYC SkylineSalesforce (NYSE:CRM) estimates adding analytics and Business Intelligence (BI) applications will increase their Total Addressable Market (TAM) by $13B in FY2014.
  • 89% of business leaders believe Big Data will revolutionize business operations in the same way the Internet did.
  • 83% have pursued Big Data projects in order to seize a competitive edge.

Despite the varying methodologies used in the studies mentioned in this roundup, many share a common set of conclusions. The high priority in gaining greater insights into customers and their unmet needs, more precise information on how to best manage and simplify sales cycles, and how to streamline service are common themes.

The most successful Big Data uses cases revolve around enterprises’ need to get beyond the constraints that hold them back from being more attentive and responsive to customers.

Presented below is a roundup of recent forecasts and estimates:

  • Wikibon projects the Big Data market will top $84B in 2026, attaining a 17% Compound Annual Growth Rate (CAGR) for the forecast period 2011 to 2026. The Big Data market reached $27.36B in 2014, up from $19.6B in 2013. These and other insights are from Wikibon’s excellent research of Big Data market adoption and growth. The graphic below provides an overview of their Big Data Market Forecast.  Source: Executive Summary: Big Data Vendor Revenue and Market Forecast, 2011-2026.

Wikibon big data forecast

  • IBM and SAS are the leaders of the Big Data predictive analytics market according to the latest Forrester Wave™: Big Data Predictive Analytics Solutions, Q2 2015. The latest Forrester Wave is based on an analysis of 13 different big data predictive analytics providers including Alpine Data Labs, Alteryx, Angoss Software, Dell, FICO, IBM, KNIME.com, Microsoft, Oracle, Predixion Software, RapidMiner, SAP, and SAS. Forrester specifically called out Microsoft Azure Learning is an impressive new entrant that shows the potential for Microsoft to be a significant player in this market. Gregory Piatetsky (@KDNuggets) has done an excellent analysis of the Forrester Wave Big Data Predictive Analytics Solutions Q2 2015 report here. Source: Courtesy of Predixion Software: The Forrester Wave™: Big Data Predictive Analytics Solutions, Q2 2015 (free, no opt-in).

Forrester Wave Big Data Predictive Analytics

  • IBM, KNIME, RapidMiner and SAS are leading the advanced analytics platform market according to Gartner’s latest Magic Quadrant. Gartner’s latest Magic Quadrant for advanced analytics evaluated 16 leading providers of advanced analytics platforms that are used to building solutions from scratch. The following vendors were included in Gartner’s analysis: Alpine Data Labs, Alteryx, Angoss, Dell, FICO, IBM, KNIME, Microsoft, Predixion, Prognoz, RapidMiner, Revolution Analytics, Salford Systems, SAP, SAS and Tibco Software, Gregory Piatetsky (@KDNuggets) provides excellent insights into shifts in Magic Quadrant for Advanced Platform rankings here.  Source: Courtesy of RapidMinerMagic Quadrant for Advanced Analytics Platforms Published: 19 February 2015 Analyst(s): Gareth Herschel, Alexander Linden, Lisa Kart (reprint; free, no opt-in).

Magic Quadrant for Advanced Analytics Platforms

  • Salesforce estimates adding analytics and Business Intelligence (BI) applications will increase their Total Addressable Market (TAM) by $13B in FY2014. Adding new apps in analytics is projected to increase their TAM to $82B for calendar year (CY) 2018, fueling an 11% CAGR in their total addressable market from CY 2013 to 2018. Source: Building on Fifteen Years of Customer Success Salesforce Analyst Day 2014 Presentation (free, no opt in).

Salesforce Graphic

  • 89% of business leaders believe big data will revolutionize business operations in the same way the Internet did. 85% believe that big data will dramatically change the way they do business. 79% agree that ‘companies that do not embrace Big Data will lose their competitive position and may even face extinction.’ 83% have pursued big data projects in order to seize a competitive edge. The top three areas where big data will make an impact in their operations include: impacting customer relationships (37%); redefining product development (26%); and changing the way operations is organized (15%).The following graphic compares the top six areas where big data is projected to have the greatest impact in organizations over the next five years. Source: Accenture, Big Success with Big Data: Executive Summary (free, no opt in).

Big Data Big Success Graphic

Frost & Sullivan Graphic

 

global text market graphic

 

  • Customer analytics (48%), operational analytics (21%), and fraud & compliance (21%) are the top three use cases for Big Data. Datameer’s analysis of the market also found that the global Hadoop market will grow from $1.5B in 2012 to $50.2B in 2020, and financial services, technology and telecommunications are the leading industries using big data solutions today. Source: Big Data: A Competitive Weapon for the Enterprise.

Big Data Use Cases in Business

  • 37% of Asia Pacific manufacturers are using Big Data and analytics technologies to improve production quality management. IDC found manufacturers in this region are relying on these technologies to reduce costs, increase productivity, and attract new customers. Source: Big Data and Analytics Core to Nex-Gen Manufacturing.

big data in manufacturing

  • Supply chain visibility (56%), geo-location and mapping data (47%) and product traceability data (42%) are the top three potential areas of Big Data opportunity for supply chain management. Transport management, supply chain planning, & network modeling and optimization are the three most popular applications of Big Data in supply chain initiatives. Source: Supply Chain Report, February 2015.

Big data use in supply chains

  • Finding correlations across multiple disparate data sources (48%), predicting customer behavior (46%) and predicting product or services sales (40%) are the three factors driving interest in Big Data analytics. These and other fascinating findings from InformationWeek’s 2015 Analytics & BI Survey provide a glimpse into how enterprises are selecting analytics applications and platforms. Source: Information Week 2015 Analytics & BI Survey.

factors driving interest in big data analysis

Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

%d bloggers like this: