Skip to content

Posts tagged ‘Supply Chains’

How To Improve Supply Chains With Machine Learning: 10 Proven Ways

Bottom line: Enterprises are attaining double-digit improvements in forecast error rates, demand planning productivity, cost reductions and on-time shipments using machine learning today, revolutionizing supply chain management in the process.

Machine learning algorithms and the models they’re based on excel at finding anomalies, patterns and predictive insights in large data sets. Many supply chain challenges are time, cost and resource constraint-based, making machine learning an ideal technology to solve them. From Amazon’s Kiva robotics relying on machine learning to improve accuracy, speed and scale to DHL relying on AI and machine learning to power their Predictive Network Management system that analyzes 58 different parameters of internal data to identify the top factors influencing shipment delays, machine learning is defining the next generation of supply chain management. Gartner predicts that by 2020, 95% of Supply Chain Planning (SCP) vendors will be relying on supervised and unsupervised machine learning in their solutions. Gartner is also predicting by 2023 intelligent algorithms, and AI techniques will be an embedded or augmented component across 25% of all supply chain technology solutions.

The ten ways that machine learning is revolutionizing supply chain management include:

  • Machine learning-based algorithms are the foundation of the next generation of logistics technologies, with the most significant gains being made with advanced resource scheduling systems. Machine learning and AI-based techniques are the foundation of a broad spectrum of next-generation logistics and supply chain technologies now under development. The most significant gains are being made where machine learning can contribute to solving complex constraint, cost and delivery problems companies face today. McKinsey predicts machine learning’s most significant contributions will be in providing supply chain operators with more significant insights into how supply chain performance can be improved, anticipating anomalies in logistics costs and performance before they occur. Machine learning is also providing insights into where automation can deliver the most significant scale advantages. Source: McKinsey & Company, Automation in logistics: Big opportunity, bigger uncertainty, April 2019. By Ashutosh Dekhne, Greg Hastings, John Murnane, and Florian Neuhaus

  • The wide variation in data sets generated from the Internet of Things (IoT) sensors, telematics, intelligent transport systems, and traffic data have the potential to deliver the most value to improving supply chains by using machine learning. Applying machine learning algorithms and techniques to improve supply chains starts with data sets that have the greatest variety and variability in them. The most challenging issues supply chains face are often found in optimizing logistics, so materials needed to complete a production run arrive on time. Source: KPMG, Supply Chain Big Data Series Part 1

  • Machine learning shows the potential to reduce logistics costs by finding patterns in track-and-trace data captured using IoT-enabled sensors, contributing to $6M in annual savings. BCG recently looked at how a decentralized supply chain using track-and-trace applications could improve performance and reduce costs. They found that in a 30-node configuration when blockchain is used to share data in real-time across a supplier network, combined with better analytics insight, cost savings of $6M a year is achievable. Source: Boston Consulting Group, Pairing Blockchain with IoT to Cut Supply Chain Costs, December 18, 2018, by Zia Yusuf, Akash Bhatia, Usama Gill, Maciej Kranz, Michelle Fleury, and Anoop Nannra

  • Reducing forecast errors up to 50% is achievable using machine learning-based techniques. Lost sales due to products not being available are being reduced up to 65% through the use of machine learning-based planning and optimization techniques. Inventory reductions of 20 to 50% are also being achieved today when machine learning-based supply chain management systems are used. Source: Digital/McKinsey, Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (PDF, 52 pp., no opt-in).

  • DHL Research is finding that machine learning enables logistics and supply chain operations to optimize capacity utilization, improve customer experience, reduce risk, and create new business models. DHL’s research team continually tracks and evaluates the impact of emerging technologies on logistics and supply chain performance. They’re also predicting that AI will enable back-office automation, predictive operations, intelligent logistics assets, and new customer experience models. Source: DHL Trend Research, Logistics Trend Radar, Version 2018/2019 (PDF, 55 pp., no opt-in)

  • Detecting and acting on inconsistent supplier quality levels and deliveries using machine learning-based applications is an area manufacturers are investing in today. Based on conversations with North American-based mid-tier manufacturers, the second most significant growth barrier they’re facing today is suppliers’ lack of consistent quality and delivery performance. The greatest growth barrier is the lack of skilled labor available. Using machine learning and advanced analytics manufacturers can discover quickly who their best and worst suppliers are, and which production centers are most accurate in catching errors. Manufacturers are using dashboards much like the one below for applying machine learning to supplier quality, delivery and consistency challenges. Source: Microsoft, Supplier Quality Analysis sample for Power BI: Take a tour, 2018

  • Reducing risk and the potential for fraud, while improving the product and process quality based on insights gained from machine learning is forcing inspection’s inflection point across supply chains today. When inspections are automated using mobile technologies and results are uploaded in real-time to a secure cloud-based platform, machine learning algorithms can deliver insights that immediately reduce risks and the potential for fraud. Inspectorio is a machine learning startup to watch in this area. They’re tackling the many problems that a lack of inspection and supply chain visibility creates, focusing on how they can solve them immediately for brands and retailers. The graphic below explains their platform. Source: Forbes, How Machine Learning Improves Manufacturing Inspections, Product Quality & Supply Chain Visibility, January 23, 2019

  • Machine learning is making rapid gains in end-to-end supply chain visibility possible, providing predictive and prescriptive insights that are helping companies react faster than before. Combining multi-enterprise commerce networks for global trade and supply chain management with AI and machine learning platforms are revolutionizing supply chain end-to-end visibility. One of the early leaders in this area is Infor’s Control Center. Control Center combines data from the Infor GT Nexus Commerce Network, acquired by the company in September 2015, with Infor’s Coleman Artificial Intelligence (AI) Infor chose to name their AI platform after the inspiring physicist and mathematician Katherine Coleman Johnson, whose trail-blazing work helped NASA land on the moon. Be sure to pick up a copy of the book and see the movie Hidden Figures if you haven’t already to appreciate her and many other brilliant women mathematicians’ many contributions to space exploration. ChainLink Research provides an overview of Control Center in their article, How Infor is Helping to Realize Human Potential, and two screens from Control Center are shown below.

  • Machine learning is proving to be foundational for thwarting privileged credential abuse which is the leading cause of security breaches across global supply chains. By taking a least privilege access approach, organizations can minimize attack surfaces, improve audit and compliance visibility, and reduce risk, complexity, and the costs of operating a modern, hybrid enterprise. CIOs are solving the paradox of privileged credential abuse in their supply chains by knowing that even if a privileged user has entered the right credentials but the request comes in with risky context, then stronger verification is needed to permit access.  Zero Trust Privilege is emerging as a proven framework for thwarting privileged credential abuse by verifying who is requesting access, the context of the request, and the risk of the access environment.  Centrify is a leader in this area, with globally-recognized suppliers including Cisco, Intel, Microsoft, and Salesforce being current customers.  Source: Forbes, High-Tech’s Greatest Challenge Will Be Securing Supply Chains In 2019, November 28, 2018.
  • Capitalizing on machine learning to predict preventative maintenance for freight and logistics machinery based on IoT data is improving asset utilization and reducing operating costs. McKinsey found that predictive maintenance enhanced by machine learning allows for better prediction and avoidance of machine failure by combining data from the advanced Internet of Things (IoT) sensors and maintenance logs as well as external sources. Asset productivity increases of up to 20% are possible and overall maintenance costs may be reduced by up to 10%. Source: Digital/McKinsey, Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (PDF, 52 pp., no opt-in).

References

Accenture, Reinventing The Supply Chain With AI, 20 pp., PDF, no opt-in.

Bendoly, E. (2016). Fit, Bias, and Enacted Sensemaking in Data Visualization: Frameworks for Continuous Development in Operations and Supply Chain Management Analytics. Journal Of Business Logistics37(1), 6-17.

Boston Consulting Group, Pairing Blockchain with IoT to Cut Supply Chain Costs, December 18, 2018, by Zia Yusuf, Akash Bhatia, Usama Gill, Maciej Kranz, Michelle Fleury, and Anoop Nannra

How Machine Learning Improves Manufacturing Inspections, Product Quality & Supply Chain Visibility

Bottom Line: Manufacturers’ most valuable data is generated on shop floors daily, bringing with it the challenge of analyzing it to find prescriptive insights fast – and an ideal problem for machine learning to solve.

Manufacturing is the most data-prolific industry there is, generating on average 1.9 petabytes of data every year according to the McKinsey Global Insititute. Supply chains, sourcing, factory operations, and the phases of compliance and quality management generate the majority of data.

The most valuable data of all comes from product inspections that can immediately find exceptionally strong or weak suppliers, quality management and compliance practices in a factory. Manufacturing’s massive problem is in getting quality inspection results out fast enough across brands & retailers, other factories, suppliers and vendors to make a difference in future product quality.

How A Machine Learning Startup Is Revolutionizing Product Inspections

Imagine you’re a major brand or retailer and you’re relying on a network of factories across Bangladesh, China, India, and Southeast Asia to produce your new non-food consumer goods product lines including apparel. Factories, inspection agencies, suppliers and vendors that brands and retailers like you rely on vary widely on ethics, responsible sourcing, product quality, and transparency. With your entire consumer goods product lines (and future sales) at risk based on which suppliers, factories and product inspection agencies you choose, you and your companies’ future are riding on the decisions you make.

These career- and company-betting challenges and the frustration of gaining greater visibility into what’s going on in supply chains to factory floors led Carlos Moncayo Castillo and his brothers Fernando Moncayo Castillo and Luis Moncayo Castillo to launch Inspectorio. They were invited to the Target + Techstars Retail Accelerator in the summer of 2017, a competition they participated in with their cloud-based inspection platform that includes AI and machine learning and pervasive support for mobile technologies. Target relies on them today to bring greater transparency to their supply chains. “I’ve spent years working in non-food consumer goods product manufacturing seeing the many disconnects between inspections and suppliers, the lack of collaboration and how gaps in information create too many opportunities for corruption – I had to do something to solve these problems,” Carlos said. The many problems that a lack of inspection and supply chain visibility creates became the pain Inspectorio focused on solving immediately for brands and retailers. The following is a graphic of their platform:

Presented below are a few of the many ways the combining of a scalable inspection cloud platform combined with AI, machine learning and mobile technologies are improving inspections, product quality, and supply chain visibility:

  • Enabling the creation of customized inspector workflows that learn over time and are tailored to specific products including furniture, toys, homeware and garments, the factories they’re produced in, quality of the materials used. Inspectorio’s internal research has found 74% of all inspections today are done manually using a pen and paper, with results reported in Microsoft Word, Excel or PDFs, making collaboration slow and challenging. Improving the accuracy, speed and scale of inspection workflows including real-time updates across production networks drive major gains in quality and supply chain performance.
  • Applying constraint-based algorithms and logic to understand why there are large differences in inspection results between factories is enabling brands & retailers to manage quality faster and more completely. Uploading inspections in real-time from mobile devices to an inspection platform that contains AI and machine learning applications that quickly parse the data for prescriptive insights is the future of manufacturing quality. Variations in all dimensions of quality including factory competency, supplier and production assembly quality are taken into account. In a matter of hours, inspection-based data delivers the insights needed to avert major quality problems to every member of a production network.
  • Reducing risk, the potential for fraud, while improving the product and process quality based on insights gained from machine learning is forcing inspection’s inflection point. When inspections are automated using mobile technologies and results are uploaded in real-time to a secure cloud-based platform, machine learning algorithms can deliver insights that immediately reduce risks and the potential for fraud. One of the most powerful catalysts driving inspections’ inflection point is the combination of automated workflows that deliver high-quality data that machine learning produces prescriptive insights from. And those insights are shared on performance dashboards across every brand, retailer, supplier, vendor and factory involved in shared production strategies today.
  • Matching the most experienced inspector for a given factory and product inspection drastically increases accuracy and quality. When machine learning is applied to the inspector selection and assignment process, the quality, and thoroughness of inspections increase. For the first time, brands, retailers, and factories have a clear, quantified view of Inspector Productivity Analysis across the entire team of inspectors available in a given region or country. Inspections are uploaded in real-time to the Inspectorio platform where advanced analytics and additional machine learning algorithms are applied to the data, providing greater prescriptive insights that would have ever been possible using legacy manual methods. Machine learning is also making recommendations to inspectors on which defects to look for first based on the data patterns obtained from previous inspections.
  • Knowing why specific factories and products generated more Corrective Action/Preventative Action (CAPA) than others and how fast they have been closed in the past and why is now possible. Machine learning is making it possible for entire production networks to know why specific factory and product combinations generate the most CAPAs. Using constraint-based logic, machine learning can also provide prescriptive insights into what needs to be improved to reduce CAPAs, including their root cause.

Analytics Will Revolutionize Supply Chains In 2018

  • While 94% of supply chain leaders say that digital transformation will fundamentally change supply chains in 2018, only 44% have a strategy ready.
  • 66% of supply chain leaders say advanced supply chain analytics are critically important to their supply chain operations in the next 2 to 3 years.
  • Forecast accuracy, demand patterns, product tracking traceability, transportation performance and analysis of product returns are use cases where analytics can close knowledge gaps.

These and other insights are from The Hackett Group study, Analytics: Laying the Foundation for Supply Chain Digital Transformation (10 pp., PDF, no opt-in). The study provides insightful data regarding the increasing importance of using analytics to drive improved supply chain performance. Data included in the study also illustrate how analytics is enabling business objectives across a range of industries. The study also provides the key points that need to be considered in creating a roadmap for implementing advanced supply chain analytics leading to digital transformation. It’s an interesting, insightful read on how analytics are revolutionizing supply chains in 2018 and beyond.

Key takeaways from the study include the following:

  • 66% of supply chain leaders say advanced supply chain analytics are critically important to their supply chain operations in the next 2 to 3 years. The Hackett Group found the majority of supply chain leaders have a sense of urgency for getting advanced supply chain analytics implemented and contributing to current and future operations. The majority see the value of having advanced analytics that can scale across their entire supplier network.

  • Improving forecast accuracy, optimizing transportation performance, improving product tracking & traceability and analyzing product returns are the use cases providing the greatest potential for analytics growth. Each of these use cases and the ones that are shown in the graphic below has information and knowledge gaps advanced supply chain analytics can fill. Of these top use cases, product tracking and traceability are one of the fastest growing due to the stringent quality standards defined by the US Food & Drug Administration in CFR 21 Sec. 820.65 for medical products manufacturers.  The greater the complexity and cost of compliance with federally-mandated reporting and quality standards, the greater potential for advanced analytics to revolutionize supply chain performance.

  • Optimizing production and sourcing to reduce total landed costs (56%) is the most important use case of advanced supply chain analytics in the next 2 to 3 years. The Hackett Group aggregated use cases across the four categories of reducing costs, improving quality, improving service and improving working capital (optimizing inventory). Respondents rank improving working capital (optimizing inventory) with the highest aggregated critical importance score of 39%, followed by reducing costs (29.5%), improving service (28.6%) and improving quality (25.75%).

  • 44% of supply chain leaders are enhancing their Enterprise Resource Planning (ERP) systems’ functionality and integration to gain greater enterprise and supply chain-wide visibility. Respondents are relying on legacy ERP systems as their main systems of record for managing supply chain operations, and integrating advanced supply chain analytics to gain end-to-end supply network visibility. 94% of respondents consider virtual collaboration platforms for internal & external use the highest priority technology initiative they can accomplish in the next 2 to 3 years.

  • The majority of companies are operating at stages 1 and 2 of the Hackett Group’s Supply chain analytics maturity model. A small percentage are at the stage 3 level of maturity according to the study’s results. Supply chain operations and performance scale up the model as processes and workflows are put in place to improve data quality, provide consistent real-time data and rely on a stable system of record that can deliver end-to-end supply chain analytics visibility. Integrating with external data becomes critically important as supply networks proliferate globally, as does the need to drive greater predictive analytics accuracy.

%d bloggers like this: