Skip to content

Posts tagged ‘Salesforce Einstein’

FinancialForce’s Spring 2021 Release Shows Why Being Customer-Centric Pays

FinancialForce's Spring 2021 Release Shows Why Being Customer-Centric Pays

Bottom Line: Customer revenue lifecycles are the lifeblood of any services business, making FinancialForce’s Spring 2021 release timely given the services-first revenue renaissance happening today.

The essence of an excellent services business is that it can consistently create expectations clients trust and the business regularly exceeds. Orchestrating the best people for a given project at the right time, tracking costs, revenue, and margin across all services revenue, including those associated with a client’s assets, is very challenging. Customer revenue lifecycles are in the data, yet no one can get to them because they’re hidden across multiple systems that aren’t integrated. Knowing how efficient a services business is at turning customer engagement into cash is what everyone needs to know, but no one can find. The challenge is equally as daunting for long-established services providers and those rushing into new services businesses to redefine themselves in the hope of profits that are more consistent and fewer price wars.

How Much Is Customer Engagement Is Worth?

Services businesses face the paradox of exceeding client expectations with every engagement but not knowing if extra time, resources, and staff invested are paying off with more revenue and profit. FinancialForce’s Spring 2021 release looks to solve this problem. What galvanizes the ERP, PSA, and platform announcements is a fresh intensity on customer centricity, both for the services business adopting the Spring 2021 release and the customers it’s intended to serve.

Knowing if and by how much a given customer engagement and its revenue lifecycle generate cash, and its potential is one of the core focus areas of the Spring 2021 release. It’s badly needed as many services are flying blind today, overcommitting resources for little return and too often losing control of client engagement and paying the price in lost margin and profits. FinancialForce sees that pain and wants to alleviate it with better financial visibility on all aspects of customer services revenue. FinancialForce aims to provide customer-centric financial reporting down to the revenue stream and costing measure level.  

FinancialForce's Spring 2021 Release Shows Why Being Customer-Centric Pays
Knowing every customer’s impact on revenue and profitability from all revenue streams will make managing services engagements much more accurate, easier to manage, and more profitable. 

Key Takeaways From The Spring 2021 Release

Customer centricity seen through a financial lens is the cornerstone of FinancialForce’s latest release. One of the primary goals of this release is to update more applications to Salesforce Lightning to provide FinancialForce users with a more consistent user experience across all applications.  Salesforce has been doubling down for years on Lightning and its user experience technologies, with FinancialForce reaping the benefits for over a decade. FinancialForce is transitioning their core Professional Services Automation (PSA), Billing, Accounting & Finance and Procurement, Order and Inventory Management to Lightning in this release in response to their customers wanting a consistent user experience across the entire FinancialForce suite of applications.  The Spring 2021 release reflects how FinancialForce strives to provide a real-time understanding of customer lifetime value for their ERP and PSA customers.  

Additional key takeaways include the following:

  • FinancialForce sees reducing days to close as one of the highest priorities they need to address today. The majority of new feature announcements center on how the days to close cycles can be streamlined, especially across multi-company and multisite locations across geographic and currency-specific regions of the world. Multi-company currency revaluation will help FinancialForce customers who operate across multiple geographies that operate in different currencies and will be especially useful for those clients creating new global channels and considering foreign acquisitions. Further showing the high priority they are putting on reducing days to close, the Spring 2021 release also includes automated eliminations, multi-company period close for software closes, which are designed to temporarily close out a financial report and revenue schedules that can provide a future view in revenues – a key factor in knowing customer revenue lifecycles.
  • New features and a new Lightning interface for Accounting, Billing Central, and Inventory Management simplifies complex transactions for users. FinancialForce has one of the most customer-driven product management teams in enterprise software. The depth of features they have added to inventory management, transactional and reconciliation processes for accounting, drop-ship use cases, and enhancements for adding products to billing contracts show how much FinancialForce is listening to customers.
  • AI-enhanced financial reporting that works with any Einstein data set. FinancialForce leads the Salesforce partner ecosystem when it comes to integrating Tableau CRM (formerly known as Einstein Analytics) into its platform. Now thirteen releases in, FinancialForce’s Spring 2021 release reflects the intuitive, adaptive intelligence that the product management team aims to achieve by integrating Einstein into their financial reporting workflows. 
  • Professional Services Automation (PSA) Applications Including Resource Management, Project Management, and Time & Expense upgraded to Lightning.  Transitioning three of the core PSA applications to Lightning will help broaden adoption and make them easier to upsell and cross-sell across the FinancialForce customer base. It will also help existing customers using these applications get new employees up to speed faster on them, given how much more streamlined Lightning is as an interface compared to previous versions.
  • Intelligent Staffing solves the complex challenges resource managers face when assigning the best possible associates to a given project. Designed to filter and intelligently rank potential resources based on region, practice, group skill sets, and availability, Intelligent Staffing is designed to get resource managers as close to an ideal match as possible for a given project’s requirements. This is a much-welcomed new feature by FinancialForce customers who are large-scale services providers as they’re facing the challenges of assigning the right person to the right project at the right time to ensure project success.    
  • Integration of Salesforce AI’s Next Best Action (NBA) will raise the level of project expertise at scale across customers.  Part of the customer centricity focus in Spring 2021 is focused on providing customers with new technologies and applications to share expertise and knowledge at scale. Next Best Action provides prescriptive guidance for the project manager and will see heavy use in new associate onboarding across services businesses and achieve greater corporate-wide learning at scale. This is consistent with the focus in the Spring 2021 release on bringing greater space and speed to mid-size and larger services customers.

Conclusion

FinancialForce defines customer engagement and centricity from a financial standpoint in the Spring 2021 release. Too often, services businesses commit to large-scale projects without a clear idea of the customer revenue lifecycle. With FinancialForce, they can stop and ask if the level of customer engagement they’re committing to is worth it or not – and if it isn’t, what needs to be done. FinancialForce is doubling down on user experience and accelerating time-to-close, two areas their customers want innovation to and look to them to deliver. Look for FinancialForce to scale out with more MuleSoft and Tableau integration scenarios, all aimed at capitalizing on their expertise developing on the Salesforce platform. There’s a bigger challenge to customer engagement on the horizon, and that’s providing a real-time view of financials across all customers with all available data across a business, making MuleSoft integration key to FinancialForce’s future growth.

How FinancialForce Is Using AI To Fight Revenue Leakage

How FinancialForce Is Using AI To Fight Revenue Leakage

Bottom Line: Using AI to measure and predict revenue, costs, and margin across all Professional Services (PS) channels leads to greater accuracy in predicting payment risks, project overruns, and service forecasts, reducing revenue leakage in the process.

Professional Services’ Revenue Challenges Are Complex

Turning time into revenue and profits is one of the greatest challenges of running a Professional Services (PS) business. What makes it such a challenge is incomplete time tracking data and how quickly revenue leaks spring up, drain margins, and continue unnoticed for months. Examples of revenue leaks across a customers’ life cycles include the following:

  • Billing errors are caused by the booking and contract process not being in sync with each other leading to valuable time being wasted.
  • When products are bundled with services, there’s often confusion over recognizing each revenue source, when, and by which PS metric.
  • Inconsistent, inaccurate project cost estimates and actual activity lead to inaccurate forecasting, delaying the project close and the potential for bad debt write-offs and high Days Sales Outstanding (DSO).
  • Revenue leakage gains momentum and drains margins when the following happens:
    • Un-forecasted delays and timescale creep
    • Reduced utilization rates across each key resource required for the project to be completed
    • Invoice and billing errors that result in invoice disputes that turn into high DSOs & write-offs
    • Incorrect pricing versus the costs of sales & service often leads to customer churn.
    • Revenue leakage gains momentum as each of these factors further drains margin

Adding up all these examples and many more can easily add up to 20-30% of actual lost solution and services margin. In many ways, it’s like death by a thousand small cuts. The following graphic provides examples across the customer lifecycle:

How FinancialForce Is Using AI To Fight Revenue Leakage

Why Professional Services Are Especially Vulnerable To Revenue Leakage 

Selling projects and the promise of their outcomes in the future create a unique series of challenges for PS organizations when it comes to controlling revenue leakage. It often starts with inaccurately scoping a project too aggressively to win the deal, only to determine the complexity of tasks originally budgeted for will take 10 – 30% longer or more. Disconnects on project scope are unfortunately too common, turning small revenue leaks into major ones and the potential of long Days Sales Outstanding (DSO) on invoices. When revenue leaks get ingrained in a project’s structure, they continue to cascade into each subsequent phase, growing and costing more than expected.

The SPI 2021 Professional Services Maturity™ Benchmark Service published by Services Performance Insight, LLC in February of this year provides insights into the hidden costs and prevalence of revenue leakage. The following table illustrates how organizations with high levels of revenue leakage also perform badly against other key metrics, including client referencability. The more revenue leakage an organization experiences, the more billable utilization drops, on-time project deliveries become worse, and executive real-time visibility becomes poorer.

How FinancialForce Is Using AI To Fight Revenue Leakage

How FinancialForce Is Using AI To Fight Revenue Leakage

It’s noteworthy that FinancialForce is now on its 12th consecutive product release that includes Salesforce Einstein, and many customers, including Five9, are using AI to manage revenue leakage across their PS business. Throughout the pandemic, the FinancialForce DevOps, product management, and software quality teams have been a machine, creating rich new releases on schedule and with improved AI functionality based on Einstein. The 12th release includes prebuilt data models, lenses, dashboards, and reports.

Andy Campbell, Solution Evangelist at FinancialForce, says that “FinancialForce customers have access to best practices to minimize revenue leakage by scoping and selling the right product and services mix to allocating the optimal range and amount of services personnel and finally billing, collecting and recognizing the right amount of revenue for services provided.” Andy continued, saying that recent dashboards have been built for resource managers to automate demand and capacity planning and service revenue forecasting and assist financial analysts in managing deferred revenue and revenue leakage.

By successfully integrating Einstein into their ERP system for PS organizations, FinancialForce helps clients find new ways to reduce revenue leakage and preserve margin. Relying on AI-based insights for each phase of a PS engagement delivered a 20% increase in Customer Lifetime Value according to a FinancialForce customer. And by combining FinancialForce and Salesforce, customers see an increased bid:win ratio of 10% or more. The following graphic illustrates how combining the capabilities of Einstein’s AI platform with FinancialForce delivers results.

How FinancialForce Is Using AI To Fight Revenue Leakage

Conclusion

FinancialForce’s model building in Einstein is based on ten years of structured and unstructured data, aggregated and anonymized, then used for in-tuning AI models. FinancialForce says these models are used as starting points or templates for AI-based products and workflows, including predict to pay.  Salesforce has also done the same for its Sales Cloud Analytics and Service Cloud Analytics. In both cases, Salesforce and FinancialForce customers benefit from best practices and recommendations based on decades of data, which should be particularly interesting considering the “black swan” nature of 2020 data for most of their customers.

10 Ways Machine Learning Is Revolutionizing Sales

  • Sales teams adopting AI are seeing an increase in leads and appointments of more than 50%, cost reductions of 40%–60%, and call time reductions of 60%–70% according to the Harvard Business Review article Why Salespeople Need to Develop Machine Intelligence.
  • 62% of highest performing salespeople predict guided selling adoption will accelerate based on its ability rank potential opportunities by value and suggest next steps according to Salesforces’ latest State of Sales research study.
  • By 2020, 30% of all B2B companies will employ AI to augment at least one of their primary sales processes according to Gartner.
  • High-performing sales teams are 4.1X more likely to use AI and machine learning applications than their peers according to the State of Sales published by Salesforce.
  • Intelligent forecasting, opportunity insights, and lead prioritization are the top three AI and machine learning use cases in sales.

Artificial Intelligence (AI) and machine learning show the potential to reduce the most time-consuming, manual tasks that keep sales teams away from spending more time with customers. Automating account-based marketing support with predictive analytics and supporting account-centered research, forecasting, reporting, and recommending which customers to upsell first are all techniques freeing sales teams from manually intensive tasks.

The Race for Sales-Focused AI & Machine Learning Patents Is On

CRM and Configure, Price & Quote (CPQ) providers continue to develop and fine-tune their digital assistants, which are specifically designed to help the sales team get the most value from AI and machine learning. Salesforces’ Einstein supports voice-activation commands from Amazon Alexa, Apple Siri, and Google. Salesforce and other enterprise software companies continue aggressively invest in Research & Development (R&D). For the nine months ended October 31, 2018, Salesforce spent $1.3B or 14% of total revenues compared to $1.1B or 15% of total revenues, during the same period a year ago, an increase of $211M according to the company’s 10Q filed with the Securities and Exchange Commission.

The race for AI and machine learning patents that streamline selling is getting more competitive every month. Expect to see the race of sales-focused AI and machine learning patents flourish in 2019. The National Bureau of Economic Research published a study last July from the Stanford Institute For Economic Policy Research titled Some Facts On High Tech Patenting. The study finds that patenting in machine learning has seen exponential growth since 2010 and Microsoft had the greatest number of patents in the 2000 to 2015 timeframe. Using patent analytics from PatentSight and ipsearchIAM published an analysis last month showing Microsoft as the global leader in machine learning patents with 2,075.  The study relied on PatentSight’s Patent Asset Index to rank machine learning patent creators and owners, revealing Microsoft and Alphabet are dominating today. Salesforce investing over $1B a year in R&D reflects how competitive the race for patents and intellectual property is.

10 Ways Machine Learning Is Revolutionizing Sales

Fueled by the proliferation of patents and the integration of AI and machine learning code into CRM, CPQ, Customer Service, Predictive Analytics and a wide variety of Sales Enablement applications, use cases are flourishing today. Presented below are the ten ways machine learning is most revolutionizing selling today:

 

  1. AI and machine learning technologies excel at pattern recognition, enabling sales teams to find the highest potential new prospects by matching data profiles with their most valuable customers. Nearly all AI-enabled CRM applications are providing the ability to define a series of attributes, characteristics and their specific values that pinpoint the highest potential prospects. Selecting and prioritizing new prospects using this approach saves sales teams thousands of hours a year.
  2. Lead scoring and nurturing based on AI and machine learning algorithms help guide sales and marketing teams to turn Marketing Qualified Leads (MQL) into Sales Qualified Leads (SQL), strengthening sales pipelines in the process. One of the most important areas of collaboration between sales and marketing is lead nurturing strategies that move prospects through the pipeline. AI and machine learning are enriching the collaboration with insights from third-party data, prospect’s activity at events and on the website, and from previous conversations with salespeople. Lead scoring and nurturing relies heavily on natural language generation (NLG) and natural-language processing (NLP) to help improve each lead’s score.
  3. Combining historical selling, pricing and buying data in a single machine learning model improves the accuracy and scale of sales forecasts. Factoring in differences inherent in every account given their previous history and product and service purchasing cycles is invaluable in accurately predicting their future buying levels. AI and machine learning algorithms integrated into CRM, sales management and sales planning applications can explain variations in forecasts, provided they have the data available. Forecasting demand for new products and services is an area where AI and machine learning are reducing the risk of investing in entirely new selling strategies for new products.
  4. Knowing the propensity of a given customer to churn versus renew is invaluable in improving Customer Lifetime Value. Analyzing a diverse series of factors to see which customers are going to churn or leave versus those that will renew is among the most valuable insights AI and machine learning is delivering today. Being able to complete a Customer Lifetime Value Analysis for every customer a company has provides a prioritized roadmap of where the health of client relationships are excellent versus those that need attention. Many companies are using Customer Lifetime Value Analysis as a proxy for a customer health score that gets reviewed monthly.
  5. Knowing the strategies, techniques and time management approaches the top 10% of salespeople to rely on to excel far beyond quota and scaling those practices across the sales team based on AI-driven insights. All sales managers and leaders think about this often, especially in sales teams where performance levels vary widely. Knowing the capabilities of the highest-achieving salespeople, then selectively recruiting those sales team candidates who have comparable capabilities delivers solid results. Leaders in the field of applying AI to talent management include Eightfold whose approach to talent management is refining recruiting and every phase of managing an employee’s potential. Please see the recent New York Times feature of them here.
  6. Guided Selling is progressing rapidly from a personalization-driven selling strategy to one that capitalized on data-driven insights, further revolutionizing sales. AI- and machine learning-based guided selling is based on prescriptive analytics that provides recommendations to salespeople of which products, services, and bundles to offer at which price. 62% of highest performing salespeople predict guided selling adoption will accelerate based on its ability rank potential opportunities by value and suggest next steps according to Salesforces’ latest State of Sales research study.
  7. Improving the sales team’s productivity by using AI and machine learning to analyze the most effective actions and behaviors that lead to more closed sales. AI and machine learning-based sales contact and customer predictive analytics take into account all sources of contacts with customers and determine which are the most effective. Knowing which actions and behaviors are correlated with the highest close rates, sales managers can use these insights to scale their sales teams to higher performance.
  8. Sales and marketing are better able to define a price optimization strategy using all available data analyzing using AI and machine learning algorithms. Pricing continues to be an area the majority of sales and marketing teams learn to do through trial and error. Being able to analyze pricing data, purchasing history, discounts are taken, promotional programs participated in and many other factors, AI and machine learning can calculate the price elasticity for a given customer, making an optimized price more achievable.
  9. Personalizing sales and marketing content that moves prospects from MQLs to SQLs is continually improving thanks to AI and machine learning. Marketing Automation applications including HubSpot and many others have for years been able to define which content asset needs to be presented to a given prospect at a given time. What’s changed is the interactive, personalized nature of the content itself. Combining analytics, personalization and machine learning, marketing automation applications are now able to tailor content and assets that move opportunities forward.
  10. Solving the many challenges of sales engineering scheduling, sales enablement support and dedicating the greatest amount of time to the most high-value accounts is getting solved with machine learning. CRM applications including Salesforce can define a salesperson’s schedule based on the value of the potential sale combined with the strength of the sales lead, based on its lead score. AI and machine learning optimize a salesperson’s time so they can go from one customer meeting to the next, dedicating their time to the most valuable prospects.
%d bloggers like this: