Skip to content

Posts tagged ‘Manufacturing Intelligence’

Smart Machines Are The Future Of Manufacturing

Smart Machines Are The Future Of Manufacturing

  • Industrial Internet of Things (IIoT) presents integration architecture challenges that once solved can enable use cases that deliver fast-growing revenue opportunities.
  • ISA-95 addressed the rise of global production and distributed supply chains yet are still deficient on the issue of data and security, specifically the proliferation of IIoT sensors, which are the real security perimeter of any manufacturing business.
  • Finding new ways to excel at predictive maintenance, and cross-vendor shop floor integration are the most promising applications.
  • IIoT manufacturing systems are quickly becoming digital manufacturing platforms that integrate ERP, MES, PLM and CRM systems to provide a single unified view of product configurations.

These and many other fascinating insights are from an article McKinsey published titled IIoT platforms: The technology stack as value driver in industrial equipment and machinery which explores how the Industrial Internet of things (IIoT) is redefining industrial equipment and machinery manufacturing. It’s based on a thorough study also published this month, Leveraging Industrial Software Stack Advancement For Digital TransformationA copy of the study is downloadable here (PDF, 50 pp., no opt-in). The study shows how smart machines are the future of manufacturing, exploring how IIoT platforms are enabling greater machine-level autonomy and intelligence.

The following are the key takeaways from the study:

  • Capturing IIoT’s full value potential will require more sophisticated integrated approaches than current automation protocols provide. IIoT manufacturing systems are quickly becoming digital manufacturing platforms that integrate ERP, MES, PLM and CRM systems to provide a single unified view of product configurations and support the design-to-manufacturing process. Digital manufacturing platforms are already enabling real-time monitoring to the machine and shop floor level. The data streams real-time monitoring is delivering today is the catalyst leading to greater real-time analytics accuracy, machine learning adoption and precision and a broader integration strategy to the PLC level on legacy machinery. Please click on the graphic to expand for easier reading.

  • Inconsistent data structures at the machine, line, factory and company levels are slowing down data flows and making full transparency difficult to attain today in many manufacturers. Smart machines with their own operating systems that orchestrate IIoT data and ensure data structure accuracy are being developed and sold now, making this growth constraint less of an issue. The millions of legacy industrial manufacturing systems will continue to impede IIoT realizing its full potential, however. The following graphic reflects the complexities of making an IIoT platform consistent across a manufacturing operation. Please click on the graphic to expand for easier reading.

  • Driven by price wars and commoditized products, manufacturers have no choice but to pursue smart, connected machinery that enables IIoT technology stacks across shop floors. The era of the smart, connected machines is here, bringing with it the need to grow services and software revenue faster than transaction-based machinery sales. Machinery manufacturers are having to rethink their business models and redefine product strategies to concentrate on operating system-like functionality at the machine level that can scale and provide a greater level of autonomy, real-time data streams that power more accurate predictive maintenance, and cross-vendor shop floor integration. Please click on the graphic for easier reading.

  • Machines are being re-engineered starting with software and services as the primary design goals to support new business models. Machinery manufacturers are redefining existing product lines to be more software- and services-centric. A few are attempting to launch subscription-based business models that enable them to sell advanced analytics of machinery performance to customers. The resulting IIoT revenue growth will be driven by platforms as well as software and application development and is expected to be in the range of 20 to 35%. Please click on the graphic to expand for easier reading.

What Matters Most In Business Intelligence, 2019

  • Improving revenues using BI is now the most popular objective enterprises are pursuing in 2019.
  • Reporting, dashboards, data integration, advanced visualization, and end-user self-service are the most strategic BI initiatives underway in enterprises today.
  • Operations, Executive Management, Finance, and Sales are primarily driving Business Intelligence (BI) adoption throughout enterprises today.
  • Tech companies’ Operations & Sales teams are the most effective at driving BI adoption across industries surveyed, with Advertising driving BI adoption across Marketing.

These and many other fascinating insights are from Dresner Advisory Associates’ 10th edition of its popular Wisdom of Crowds® Business Intelligence Market Study. The study is noteworthy in that it provides insights into how enterprises are expanding their adoption of Business Intelligence (BI) from centralized strategies to tactical ones that seek to improve daily operations. The Dresner research teams’ broad assessment of the BI market makes this report unique, including their use visualizations that provide a strategic view of market trends. The study is based on interviews with respondents from the firms’ research community of over 5,000 organizations as well as vendors’ customers and qualified crowdsourced respondents recruited over social media. Please see pages 13 – 16 for the methodology.

Key insights from the study include the following:

  • Operations, Executive Management, Finance, and Sales are primarily driving Business Intelligence (BI) adoption throughout their enterprises today. More than half of the enterprises surveyed see these four departments as the primary initiators or drivers of BI initiatives. Over the last seven years, Operations departments have most increased their influence over BI adoption, more than any other department included in the current and previous survey. Marketing and Strategic Planning are also the most likely to be sponsoring BI pilots and looking for new ways to introduce BI applications and platforms into use daily.

  • Tech companies’ Operations & Sales teams are the most effective at driving BI adoption across industries surveyed, with Advertising driving BI adoption across Marketing. Retail/Wholesale and Tech companies’ sales leadership is primarily driving BI adoption in their respective industries. It’s not surprising to see the leading influencer among Healthcare respondents is resource-intensive HR. The study found that Executive Management is most likely to drive business intelligence in consulting practices most often.

  • Reporting, dashboards, data integration, advanced visualization, and end-user self-service are the most strategic BI initiatives underway in enterprises today. Second-tier initiatives include data discovery, data warehousing, data discovery, data mining/advanced algorithms, and data storytelling. Comparing the last four years of survey data, Dresner’s research team found reporting retains all-time high scores as the top priority, and data storytelling, governance, and data catalog hold momentum. Please click on the graphic to expand for easier reading.

  • BI software providers most commonly rely on executive-level personas to design their applications and add new features. Dresner’s research team found all vertical industries except Business Services target business executives first in their product design and messaging. Given the customer-centric nature of advertising and consulting services business models, it is understandable why the primary focus BI vendors rely on in selling to them are customer personas. The following graphic compares targeted users for BI by industry.

  • Improving revenues using BI is now the most popular objective in 2019, despite BI initially being positioned as a solution for compliance and risk management. Executive Management, Marketing/Sales, and Operations are driving the focus on improving revenues this year. Nearly 50% of enterprises now expect BI to deliver better decision making, making the areas of reporting, and dashboards must-have features. Interestingly, enterprises aren’t looking to BI as much for improving operational efficiencies and cost reductions or competitive advantages. Over the last 12 to 18 months, more tech manufacturing companies have initiated new business models that require their operations teams to support a shift from products to services revenues. An example of this shift is the introduction of smart, connected products that provide real-time data that serves as the foundation for future services strategies. Please click on the graphic to expand for easier reading.

  • In aggregate, BI is achieving its highest levels of adoption in R&D, Executive Management, and Operations departments today. The growing complexity of products and business models in tech companies, increasing reliance on analytics and BI in retail/wholesale to streamline supply chains and improve buying experiences are contributing factors to the increasing levels of BI adoption in these three departments. The following graphic compares BI’s level of adoption by function today.

  • Enterprises with the largest BI budgets this year are investing more heavily into dashboards, reporting, and data integration. Conversely, those with smaller budgets are placing a higher priority on open source-based big data projects, end-user data preparation, collaborative support for group-based decision-making, and enterprise planning. The following graphic provides insights into technologies and initiatives strategic to BI at an enterprise level by budget plans.

  • Marketing/Sales and Operations are using the greatest variety of BI tools today. The survey shows how conversant Operations professionals are with the BI tools in use throughout their departments. Every one of them knows how many and most likely which types of BI tools are deployed in their departments. Across all industries, Research & Development (R&D), Business Intelligence Competency Center (BICC), and IT respondents are most likely to report they have multiple tools in use.

10 Ways Machine Learning Is Revolutionizing Manufacturing In 2018

  • Improving semiconductor manufacturing yields up to 30%, reducing scrap rates, and optimizing fab operations is achievable with machine learning.
  • Reducing supply chain forecasting errors by 50% and lost sales by 65% with better product availability is achievable with machine learning.
  • Automating quality testing using machine learning is increasing defect detection rates up to 90%.

Bottom line: Machine learning algorithms, applications, and platforms are helping manufacturers find new business models, fine-tune product quality, and optimize manufacturing operations to the shop floor level.

Manufacturers care most about finding new ways to grow, excel at product quality while still being able to take on short lead-time production runs from customers. New business models often bring the paradox of new product lines that strain existing ERP, CRM and PLM systems by the need always to improve time-to-customer performance. New products are proliferating in manufacturing today, and delivery windows are tightening. Manufacturers are turning to machine learning to improve the end-to-end performance of their operations and find a performance-based solution to this paradox.

The ten ways machine learning is revolutionizing manufacturing in 2018 include the following:

  • Improving semiconductor manufacturing yields up to 30%, reducing scrap rates, and optimizing fab operations are is achievable with machine learning. Attaining up to a 30% reduction in yield detraction in semiconductor manufacturing, reducing scrap rates based on machine learning-based root-cause analysis and reducing testing costs using AI optimization are the top three areas where machine learning will improve semiconductor manufacturing. McKinsey also found that AI-enhanced predictive maintenance of industrial equipment will generate a 10% reduction in annual maintenance costs, up to a 20% downtime reduction and 25% reduction in inspection costs. Source: Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company.

  • Asset Management, Supply Chain Management, and Inventory Management are the hottest areas of artificial intelligence, machine learning and IoT adoption in manufacturing today. The World Economic Forum (WEF) and A.T. Kearney’s recent study of the future of production find that manufacturers are evaluating how combining emerging technologies including IoT, AI, and machine learning can improve asset tracking accuracy, supply chain visibility, and inventory optimization. Source: Technology and Innovation for the Future of Production: Accelerating Value Creation (38 pp., PDF, no opt-in) World Economic Forum with A.T. Kearney.

  • Manufacturer’s adoption of machine learning and analytics to improve predictive maintenance is predicted to increase 38% in the next five years according to PwC. Analytics and MI-driven process and quality optimization are predicted to grow 35% and process visualization and automation, 34%. PwC sees the integration of analytics, APIs and big data contributing to a 31% growth rate for connected factories in the next five years. Source: Digital Factories 2020: Shaping the future of manufacturing (48 pp., PDF, no opt-in) PriceWaterhouseCoopers

  • McKinsey predicts machine learning will reduce supply chain forecasting errors by 50% and reduce lost sales by 65% with better product availability. Supply chains are the lifeblood of any manufacturing business. Machine learning is predicted to reduce costs related to transport and warehousing and supply chain administration by 5 to 10% and 25 to 40%, respectively. Due to machine learning, overall inventory reductions of 20 to 50% are possible. Source: Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company.

  • Improving demand forecast accuracy to reduce energy costs and negative price variances using machine learning uncovers price elasticity and price sensitivity as well. Honeywell is integrating AI and machine-learning algorithms into procurement, strategic sourcing and cost management. Source: Honeywell Connected Plant: Analytics and Beyond. (23 pp., PDF, no opt-in) 2017 Honeywell User’s Group.

  • Automating inventory optimization using machine learning has improved service levels by 16% while simultaneously increasing inventory turns by 25%. AI and machine learning constraint-based algorithms and modeling are making it possible scale inventory optimization across all distribution locations, taking into account external, independent variables that affect demand and time-to-customer delivery performance. Source: Transform the manufacturing supply chain with Multi-Echelon inventory optimization, Microsoft, March 1, 2018.

  • Combining real-time monitoring and machine learning is optimizing shop floor operations, providing insights into machine-level loads and production schedule performance. Knowing in real-time how each machine’s load level impacts overall production schedule performance leads to better decisions managing each production run. Optimizing the best possible set of machines for a given production run is now possible using machine learning algorithms. Source: Factories of the Future: How Symbiotic Production Systems, Real-Time Production Monitoring, Edge Analytics and AI Are Making Factories Intelligent and Agile, (43 pp., PDF, no opt-in) Youichi Nonaka, Senior Chief Researcher, Hitachi R&D Group and Sudhanshu Gaur Director, Global Center for Social Innovation Hitachi America R&D

  • Improving the accuracy of detecting costs of performance degradation across multiple manufacturing scenarios reduces costs by 50% or more. Using real-time monitoring technologies to create accurate data sets that capture pricing, inventory velocity, and related variables gives machine learning apps what they need to determine cost behaviors across multiple manufacturing scenarios. Source: Leveraging AI for Industrial IoT (27 pp., PDF, no opt-in) Chetan Gupta, Ph.D. Chief Data Scientist, Big Data Lab, Hitachi America Ltd. Date: Sept. 19th, 2017

  • A manufacturer was able to achieve a 35% reduction in test and calibration time via accurate prediction of calibration and test results using machine learning. The project’s goal was to reduce test and calibration time in the production of mobile hydraulic pumps. The methodology focused on using a series of machine learning models that would predict test outcomes and learn over time. The process workflow below was able to isolate the bottlenecks, streamlining test and calibration time in the process. Source: The Value Of Data Science Standards In Manufacturing Analytics (13 pp., PDF, no opt-in) Soundar Srinivasan, Bosch Data Mining Solutions And Services

  • Improving yield rates, preventative maintenance accuracy and workloads by the asset is now possible by combining machine learning and Overall Equipment Effectiveness (OEE). OEE is a pervasively used metric in manufacturing as it combines availability, performance, and quality, defining production effectiveness. Combined with other metrics, it’s possible to find the factors that impact manufacturing performance the most and least. Integrating OEE and other datasets in machine learning models that learn quickly through iteration are one of the fastest growing areas of manufacturing intelligence and analytics today. Source: TIBCO Manufacturing Solutions, TIBCO Community, January 30, 2018

Additional reading:

Artificial Intelligence (AI) Delivering Breakthroughs in Industrial IoT (26 pp., PDF, no opt-in) Hitachi

Artificial Intelligence and Robotics and Their Impact on the Workplace (120 pp., PDF, no opt-in) IBA Global Employment Institute

Artificial Intelligence: The Next Digital Frontier? (80 pp., PDF, no opt-in) McKinsey and Company

Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing (20 pp., PDF, no opt-in), Applied Materials, Applied Global Services

Connected Factory and Digital Manufacturing: A Competitive Advantage, Shantanu Rai, HCL Technologies (36 pp., PDF, no opt-in)

Demystifying AI, Machine Learning, and Deep Learning, DZone, AI Zone

Digital Factories 2020: Shaping the future of manufacturing (48 pp., PDF, no opt-in) PriceWaterhouseCoopers

Emerging trends in global advanced manufacturing: Challenges, Opportunities, And Policy Responses (76 pp., PDF, no opt-in) University of Cambridge

Factories of the Future: How Symbiotic Production Systems, Real-Time Production Monitoring, Edge Analytics and AI Are Making Factories Intelligent and Agile, (43 pp., PDF, no opt-in) Youichi Nonaka, Senior Chief Researcher, Hitachi R&D Group and Sudhanshu Gaur Director, Global Center for Social Innovation Hitachi America R&D

Get started with the Connected factory preconfigured solution, Microsoft Azure

Honeywell Connected Plant: Analytics and Beyond. (23 pp., PDF, no opt-in) 2017 Honeywell User’s Group.

Impact of the Fourth Industrial Revolution on Supply Chains (22 pp., PDF, no opt-in) World Economic Forum

Leveraging AI for Industrial IoT (27 pp., PDF, no opt-in) Chetan Gupta, Ph.D. Chief Data Scientist, Big Data Lab, Hitachi America Ltd. Date: Sept. 19th, 2017

Machine Learning & Artificial Intelligence Presentation (14 pp., PDF, no opt-in) Erik Hjerpe Volvo Car Group

Machine Learning Techniques in Manufacturing Applications & Caveats, (44 pp., PDF, no opt-in), Thomas Hill, Ph.D. | Exec. Director Analytics, Dell

Machine learning: the power and promise of computers that learn by example (128 pp., PDF, no opt-in) Royal Society UK

Predictive maintenance and the smart factory (8 pp., PDF, no opt-in) Deloitte

Priore, P., Gómez, A., Pino, R., & Rosillo, R. (2014). Dynamic scheduling of manufacturing systems using machine learning: An updated reviewAi Edam28(1), 83-97.

Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company

Technology and Innovation for the Future of Production: Accelerating Value Creation (38 pp., PDF, no opt-in) World Economic Forum with A.T. Kearney

The Future of Manufacturing; Making things in a changing world (52 pp., PDF, no opt-in) Deloitte University Press

The transformative potential of AI in the manufacturing industry, Microsoft, by Sanjay Ravi, Managing Director, Worldwide Discrete Manufacturing, Microsoft, September 25, 2017

The Value Of Data Science Standards In Manufacturing Analytics (13 pp., PDF, no opt-in) Soundar Srinivasan, Bosch Data Mining Solutions And Services

TIBCO Manufacturing Solutions, TIBCO Community, January 30, 2018

Transform the manufacturing supply chain with Multi-Echelon inventory optimization, Microsoft, March 1, 2018.

Turning AI into concrete value: the successful implementers’ toolkit (28 pp., PDF, no opt-in) Capgemini Consulting

Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applicationsProduction & Manufacturing Research4(1), 23-45.

10 Ways Analytics Are Accelerating Digital Manufacturing

  • 42% of manufacturers say big data and analytics as their highest priority in 2015.
  • 56% of power distribution providers rank big data and analytics within their top three priorities for 2015.
  • 61% of aviation companies consider big data and analytics their highest priority this year.

Bottom line: Digital manufacturing strategies are gaining ground as manufacturers adopt big data and analytics to improve operational effectiveness, time-to-market, new product development and increase product quality and reliability.

Analytics Are Fueling Digital Manufacturing Growth

Big data and analytics adoption by manufacturers is the first step many are taking to create a galvanized, intelligent digital thread that unifies every aspect of their value chains. For aerospace manufacturers whose supply chains are exceptionally complex, big data and analytics are revolutionizing value chains starting with suppliers and progressing through all operations.

The majority of manufacturers are relying on analytics to improve order accuracy, shipment & cycle time performance, and product quality. Those excelling at digital manufacturing strategies are gaining additional analytical insights into how they can make decisions more accurately, quicker and with lower potential costs and risks.

The manufacturing industry generates more data than any other sector of the global economy on a consistent basis.   The more complex a given manufacturers’ operations are, the more valuable the insights gained from big data and analytics. The following comparison of big data analytics priorities by industry from a recent speech given by Jeff Immelt, CEO and President of General Electric illustrates this point:

analytics customer survey

Source: GE Minds and Machines Presentation, Jeff Immelt, CEO & President, General Electric.

10 Ways Analytics Are Accelerating Digital Manufacturing 

The ten ways analytics is accelerating digital manufacturing adoption globally include the following:

  • Providing real-time operator intelligence (70%), remote monitoring and diagnostics (66%), and condition-based maintenance (59%) are the three most valuable areas for analytics GE customers mentioned in a recent survey. GE’s industrial customers are looking to tailor pre-built applications that can deliver the eight different functional areas shown in the graphic below.  Manufacturers are looking to asset performance management as an integral part of their digital thread’s analytics and insight.

industrial customer perspective

Source: GE Minds and Machines Presentation, Jeff Immelt, CEO & President, General Electric.

  • Using data modeling to improve production workflows is improving Earnings Before Interest & Taxes (EBIT) by 55% for a chemical manufacturer.  Using analytics and data modeling to make more accurate,  efficient decisions encompassing making or buying ingredients, choosing to substitute an ingredient or not, optimizing equipment usage and/or reliability and gaining incremental sales through increased production capacity is leading to a significant improvement in EBIT for a leading chemical manufacturer on a consistent basis.  The following graphic provides insights into the contributions of each factor in improving EBIT performance.

EBIT Growth

Source: Taming manufacturing complexity with advanced analytics. McKinsey & Company by Patrick Briest, Valerio Dilda, and Ken Somers February 2015. 

  • Planning-execution integration in production centers and real-time production integration are two areas where analytics are having the greatest impact on manufacturers’ operating expenses (OPEX). When analytics are integrated as part of a digital manufacturing strategy, supply chains benefit when Web-EDI (Electronic Data Interchange) and real-time order conformation are implemented and analyzed for continual improvement.

Digital initaitves impact

Source: Operational Excellence through Digital in Manufacturing Industries. Capgemini Consulting.

  • Optimization tools (56%), demand forecasting (53%), integrated business planning (48%) and supplier collaboration & risk analytics (46%) are being rapidly adopted by manufacturers today, setting the foundation for digital manufacturing growth.  Deloitte recently interviewed supply chain executives regarding the thirteen fastest-moving technical capacities they are using today and expect to use in the future. The following graphic provides an overview of supply chain capabilities current in use and what percent of each they expect to use in the future.

use of supply chain capabilities

Source: Supply Chain Talent of the Future Findings from the third annual supply chain survey. Deloitte.  2015.

  • Analytics is integral to making the vision of Industrie 4.0 a reality. Industrie 4.0 is a German government initiative that promotes automation of the manufacturing industry with the goal of developing Smart Factories. Analytics is extensively used in manufacturing centers who are in the process of reengineering their entire operations to attain Industrie 4.0 compliance. Manufacturing value chains in highly regulated industries that rely on German suppliers and manufacturers are also relying on analytics extensively to guide their Industrie 4.0 journey. A recent Deloitte study of Industrie 4.0 adoption found that research and development (43%) will see the greatest transformational contribution from Industry 4.0.

Industry 4.0 areas

Source: Industry 4.0: Challenges and solutions for the digital transformation and use of exponential technologies. Deloitte Consulting, 2015

  • Analytics is enabling manufacturers to also scale real time cloud-based operational intelligence, condition-based monitoring, monitoring & diagnostics and asset lifecycle management across global manufacturing centers.  Capturing, aggregating, analyzing and taking action on analytics across all production centers using the GE Predix Cloud will also accelerate digital manufacturing growth over time.  Integrating analytics, industrial and sensor data into a scalable series of data models and apps delivered as a Platform-as-a-Service (PaaS), GE will make this service commercially available in 2016.  The following graphic illustrates how complex manufacturers could use Predix Cloud to improve operational efficiency and quality.

horizontal capability controls

Source: Jeff Immelt Presentation on Pivot Strategy, December 16, 2014

  • Analytics is providing greater insights into product, process, program and service quality, forcing manufacturers to revamp existing production centers and make them more efficient.  Gaining greater insight into which production centers and factories are delivering the highest quality products and why is now possible.  The vision of unifying quality across an enterprise quality management and compliance (ECQM) framework is now a reality, driving greater digital manufacturing growth as a result. The following graphic from Tableau is an example of a manufacturing quality dashboard.

Mfg quality dashboard

Source: Manufacturing Analytics Quality Dashboard

  • Increasing production yields through the use of more effective supplier quality management and bill of material (BOM) planning integrated within production processes.  Analytics is extensively being used today for supplier audits, supplier quality management and traceability. Capitalizing on the full value of these analytics is a strong catalyst for manufacturers to move closer to digitizing their operations. Check out SelectHub’s Supply Chain Management (SCM) Buyer’s Guide and leaderboard to learn more about the SCM landscape.
  • Using analytics to predict machine failures before they occur reduces downtime, production costs and increase customer satisfaction.  In highly regulated industries production equipment is periodically audited and reviewed for conformance to specific standards.  Integrating even the simplest sensor into production equipment can deliver valuable insights into what factors cause it to fail.  Analytics are providing Failure Mode and Effects Analysis (FMEA) in real-time today, providing manufacturers with a glimpse into which equipment and machinery will most likely fail when. Knowing this can save literally millions of dollars in lost production time.
  • Adopting Pareto Analysis to continually improve schedule, quality and cost performance to the cell or production center level is driving digital manufacturing adoption.  Determining which factors are enhancing or reducing product, process and program quality is now possible using advanced manufacturing analytics. Differentiating between the many symptoms of a quality problem and its root cause is now becoming possible, especially for companies pursuing digital manufacturing strategies.

Additional sources of information on the impact of analytics on digital manufacturing:

 

%d bloggers like this: