Skip to content
Advertisements

Posts tagged ‘Machine learning’

Five Ways Machine Learning Can Save Your Company From A Security Breach Meltdown

  • $86B was spent on security in 2017, yet 66% of companies have still been breached an average of five or more times.
  • Just 55% of CEOs say their organizations have experienced a breach, while 79% of CTOs acknowledge breaches have occurred. One in approximately four CEOs (24%) aren’t aware if their companies have even had a security breach.
  • 62% of CEOs inaccurately cite malware as the primary threat to cybersecurity.
  • 68% of executives whose companies experienced significant breaches in hindsight believe that the breach could have been prevented by implementing more mature identity and access management strategies.

These and many other fascinating findings are from the recently released Centrify and Dow Jones Customer Intelligence study, CEO Disconnect is Weakening Cybersecurity (31 pp, PDF, opt-in).

One of the most valuable findings from the study is how CEOs can reduce the risk of a security breach meltdown by rethinking their core cyber defense strategy by maturing their identity and access management strategies.

However, 62% of CEOs have the impression that multi-factor authentication is difficult to manage. Thus, their primary security concern is primarily driven by how to avoid delivering poor user experiences. In this context, machine learning can assist in strengthening the foundation of a multi-factor authentication platform to increase effectiveness while streamlining user experiences.

Five Ways Machine Learning Saves Companies From Security Breach Meltdowns

Machine learning is solving the security paradox all enterprises face today. Spending millions of dollars on security solutions yet still having breaches occur that are crippling their ability to compete and grow, enterprises need to confront this paradox now. There are many ways machine learning can be used to improve enterprise security. With identity being the primary point of attacks, the following are five ways machine learning can be leveraged in the context of identity and access management to minimize the risk of falling victim to a data breach.

  1. Thwarting compromised credential attacks by using risk-based models that validate user identity based on behavioral pattern matching and analysis. Machine learning excels at using constraint-based and pattern matching algorithms, which makes them ideal for analyzing behavioral patterns of people signing in to systems that hold sensitive information. Compromised credentials are the most common and lethal type of breach. Applying machine learning to this challenge by using a risk-based model that “learns’ behavior over time is stopping security breaches today.
  2. Attaining Zero Trust Security (ZTS) enterprise-wide using risk scoring models that flex to a businesses’ changing requirements. Machine learning enables Zero Trust Security (ZTS) frameworks to scale enterprise-wide, providing threat assessments and graphs that scale across every location. These score models are invaluable in planning and executing growth strategies quickly across broad geographic regions. CEOs need to see multi-factor authentication as a key foundation of ZTS frameworks that can help them grow faster. Machine learning enables IT to accelerate the development of Zero Trust Security (ZTS) frameworks and scale them globally. Removing security-based roadblocks that get in the way of future growth needs to be the highest priority CEOs address. A strong ZTS framework is as much a contributor to revenue as is any distribution or selling channel.
  3. Streamlining security access for new employees by having persona-based risk model profiles that can be quickly customized by IT for specific needs. CEOs most worry about security’s poor user experience and its impacts on productivity. The good news is that the early multi-factor authentication workflows that caused poor user experiences are being redefined with contextual insights and intelligence based on more precise persona-based risk scoring models. As the models “learn” the behaviors of employees regarding access, the level of authentication changes and the experience improves. By learning new behavior patterns over time, machine learning is accelerating how quickly employees can gain access to secured services and systems.
  4. Provide predictive analytics and insights into which are the most probable sources of threats, what their profiles are and what priority to assign to them. CIOs and the security teams they manage need to have enterprise-wide visibility of all potential threats, ideally prioritized by potential severity. Machine learning algorithms are doing this today, providing threat assessments and defining which are the highest priority threats that CIOs and their teams need to address.
  5. Stop malware-based breaches by learning how hackers modify the code bases in an attempt to bypass multi-factor authentication. One of the favorite techniques for hackers to penetrate an enterprise network is to use impersonation-based logins and passwords to pass malware onto corporate servers. Malware breaches can be extremely challenging to track. One approach that is working is when enterprises implement a ZTS framework and create specific scenarios to trap, stop and destroy suspicious malware activity.
Advertisements

10 Ways Machine Learning Is Revolutionizing Manufacturing In 2018

  • Improving semiconductor manufacturing yields up to 30%, reducing scrap rates, and optimizing fab operations is achievable with machine learning.
  • Reducing supply chain forecasting errors by 50% and lost sales by 65% with better product availability is achievable with machine learning.
  • Automating quality testing using machine learning is increasing defect detection rates up to 90%.

Bottom line: Machine learning algorithms, applications, and platforms are helping manufacturers find new business models, fine-tune product quality, and optimize manufacturing operations to the shop floor level.

Manufacturers care most about finding new ways to grow, excel at product quality while still being able to take on short lead-time production runs from customers. New business models often bring the paradox of new product lines that strain existing ERP, CRM and PLM systems by the need always to improve time-to-customer performance. New products are proliferating in manufacturing today, and delivery windows are tightening. Manufacturers are turning to machine learning to improve the end-to-end performance of their operations and find a performance-based solution to this paradox.

The ten ways machine learning is revolutionizing manufacturing in 2018 include the following:

  • Improving semiconductor manufacturing yields up to 30%, reducing scrap rates, and optimizing fab operations are is achievable with machine learning. Attaining up to a 30% reduction in yield detraction in semiconductor manufacturing, reducing scrap rates based on machine learning-based root-cause analysis and reducing testing costs using AI optimization are the top three areas where machine learning will improve semiconductor manufacturing. McKinsey also found that AI-enhanced predictive maintenance of industrial equipment will generate a 10% reduction in annual maintenance costs, up to a 20% downtime reduction and 25% reduction in inspection costs. Source: Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company.

  • Asset Management, Supply Chain Management, and Inventory Management are the hottest areas of artificial intelligence, machine learning and IoT adoption in manufacturing today. The World Economic Forum (WEF) and A.T. Kearney’s recent study of the future of production find that manufacturers are evaluating how combining emerging technologies including IoT, AI, and machine learning can improve asset tracking accuracy, supply chain visibility, and inventory optimization. Source: Technology and Innovation for the Future of Production: Accelerating Value Creation (38 pp., PDF, no opt-in) World Economic Forum with A.T. Kearney.

  • Manufacturer’s adoption of machine learning and analytics to improve predictive maintenance is predicted to increase 38% in the next five years according to PwC. Analytics and MI-driven process and quality optimization are predicted to grow 35% and process visualization and automation, 34%. PwC sees the integration of analytics, APIs and big data contributing to a 31% growth rate for connected factories in the next five years. Source: Digital Factories 2020: Shaping the future of manufacturing (48 pp., PDF, no opt-in) PriceWaterhouseCoopers

  • McKinsey predicts machine learning will reduce supply chain forecasting errors by 50% and reduce lost sales by 65% with better product availability. Supply chains are the lifeblood of any manufacturing business. Machine learning is predicted to reduce costs related to transport and warehousing and supply chain administration by 5 to 10% and 25 to 40%, respectively. Due to machine learning, overall inventory reductions of 20 to 50% are possible. Source: Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company.

  • Improving demand forecast accuracy to reduce energy costs and negative price variances using machine learning uncovers price elasticity and price sensitivity as well. Honeywell is integrating AI and machine-learning algorithms into procurement, strategic sourcing and cost management. Source: Honeywell Connected Plant: Analytics and Beyond. (23 pp., PDF, no opt-in) 2017 Honeywell User’s Group.

  • Automating inventory optimization using machine learning has improved service levels by 16% while simultaneously increasing inventory turns by 25%. AI and machine learning constraint-based algorithms and modeling are making it possible scale inventory optimization across all distribution locations, taking into account external, independent variables that affect demand and time-to-customer delivery performance. Source: Transform the manufacturing supply chain with Multi-Echelon inventory optimization, Microsoft, March 1, 2018.

  • Combining real-time monitoring and machine learning is optimizing shop floor operations, providing insights into machine-level loads and production schedule performance. Knowing in real-time how each machine’s load level impacts overall production schedule performance leads to better decisions managing each production run. Optimizing the best possible set of machines for a given production run is now possible using machine learning algorithms. Source: Factories of the Future: How Symbiotic Production Systems, Real-Time Production Monitoring, Edge Analytics and AI Are Making Factories Intelligent and Agile, (43 pp., PDF, no opt-in) Youichi Nonaka, Senior Chief Researcher, Hitachi R&D Group and Sudhanshu Gaur Director, Global Center for Social Innovation Hitachi America R&D

  • Improving the accuracy of detecting costs of performance degradation across multiple manufacturing scenarios reduces costs by 50% or more. Using real-time monitoring technologies to create accurate data sets that capture pricing, inventory velocity, and related variables gives machine learning apps what they need to determine cost behaviors across multiple manufacturing scenarios. Source: Leveraging AI for Industrial IoT (27 pp., PDF, no opt-in) Chetan Gupta, Ph.D. Chief Data Scientist, Big Data Lab, Hitachi America Ltd. Date: Sept. 19th, 2017

  • A manufacturer was able to achieve a 35% reduction in test and calibration time via accurate prediction of calibration and test results using machine learning. The project’s goal was to reduce test and calibration time in the production of mobile hydraulic pumps. The methodology focused on using a series of machine learning models that would predict test outcomes and learn over time. The process workflow below was able to isolate the bottlenecks, streamlining test and calibration time in the process. Source: The Value Of Data Science Standards In Manufacturing Analytics (13 pp., PDF, no opt-in) Soundar Srinivasan, Bosch Data Mining Solutions And Services

  • Improving yield rates, preventative maintenance accuracy and workloads by the asset is now possible by combining machine learning and Overall Equipment Effectiveness (OEE). OEE is a pervasively used metric in manufacturing as it combines availability, performance, and quality, defining production effectiveness. Combined with other metrics, it’s possible to find the factors that impact manufacturing performance the most and least. Integrating OEE and other datasets in machine learning models that learn quickly through iteration are one of the fastest growing areas of manufacturing intelligence and analytics today. Source: TIBCO Manufacturing Solutions, TIBCO Community, January 30, 2018

Additional reading:

Artificial Intelligence (AI) Delivering Breakthroughs in Industrial IoT (26 pp., PDF, no opt-in) Hitachi

Artificial Intelligence and Robotics and Their Impact on the Workplace (120 pp., PDF, no opt-in) IBA Global Employment Institute

Artificial Intelligence: The Next Digital Frontier? (80 pp., PDF, no opt-in) McKinsey and Company

Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing (20 pp., PDF, no opt-in), Applied Materials, Applied Global Services

Connected Factory and Digital Manufacturing: A Competitive Advantage, Shantanu Rai, HCL Technologies (36 pp., PDF, no opt-in)

Demystifying AI, Machine Learning, and Deep Learning, DZone, AI Zone

Digital Factories 2020: Shaping the future of manufacturing (48 pp., PDF, no opt-in) PriceWaterhouseCoopers

Emerging trends in global advanced manufacturing: Challenges, Opportunities, And Policy Responses (76 pp., PDF, no opt-in) University of Cambridge

Factories of the Future: How Symbiotic Production Systems, Real-Time Production Monitoring, Edge Analytics and AI Are Making Factories Intelligent and Agile, (43 pp., PDF, no opt-in) Youichi Nonaka, Senior Chief Researcher, Hitachi R&D Group and Sudhanshu Gaur Director, Global Center for Social Innovation Hitachi America R&D

Get started with the Connected factory preconfigured solution, Microsoft Azure

Honeywell Connected Plant: Analytics and Beyond. (23 pp., PDF, no opt-in) 2017 Honeywell User’s Group.

Impact of the Fourth Industrial Revolution on Supply Chains (22 pp., PDF, no opt-in) World Economic Forum

Leveraging AI for Industrial IoT (27 pp., PDF, no opt-in) Chetan Gupta, Ph.D. Chief Data Scientist, Big Data Lab, Hitachi America Ltd. Date: Sept. 19th, 2017

Machine Learning & Artificial Intelligence Presentation (14 pp., PDF, no opt-in) Erik Hjerpe Volvo Car Group

Machine Learning Techniques in Manufacturing Applications & Caveats, (44 pp., PDF, no opt-in), Thomas Hill, Ph.D. | Exec. Director Analytics, Dell

Machine learning: the power and promise of computers that learn by example (128 pp., PDF, no opt-in) Royal Society UK

Predictive maintenance and the smart factory (8 pp., PDF, no opt-in) Deloitte

Priore, P., Gómez, A., Pino, R., & Rosillo, R. (2014). Dynamic scheduling of manufacturing systems using machine learning: An updated reviewAi Edam28(1), 83-97.

Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? (52 pp., PDF, no opt-in) McKinsey & Company

Technology and Innovation for the Future of Production: Accelerating Value Creation (38 pp., PDF, no opt-in) World Economic Forum with A.T. Kearney

The Future of Manufacturing; Making things in a changing world (52 pp., PDF, no opt-in) Deloitte University Press

The transformative potential of AI in the manufacturing industry, Microsoft, by Sanjay Ravi, Managing Director, Worldwide Discrete Manufacturing, Microsoft, September 25, 2017

The Value Of Data Science Standards In Manufacturing Analytics (13 pp., PDF, no opt-in) Soundar Srinivasan, Bosch Data Mining Solutions And Services

TIBCO Manufacturing Solutions, TIBCO Community, January 30, 2018

Transform the manufacturing supply chain with Multi-Echelon inventory optimization, Microsoft, March 1, 2018.

Turning AI into concrete value: the successful implementers’ toolkit (28 pp., PDF, no opt-in) Capgemini Consulting

Wuest, T., Weimer, D., Irgens, C., & Thoben, K. D. (2016). Machine learning in manufacturing: advantages, challenges, and applicationsProduction & Manufacturing Research4(1), 23-45.

10 Ways Machine Learning Is Revolutionizing Marketing

 

  • 84% of marketing organizations are implementing or expanding AI and machine learning in 2018.
  • 75% of enterprises using AI and machine learning enhance customer satisfaction by more than 10%.
  • 3 in 4 organizations implementing AI and machine learning increase sales of new products and services by more than 10% according to Capgemini.

Measuring marketing’s many contributions to revenue growth is becoming more accurate and real-time thanks to analytics and machine learning. Knowing what’s driving more Marketing Qualified Leads (MQLs), Sales Qualified Leads (SQL), how best to optimize marketing campaigns, and improving the precision and profitability of pricing are just a few of the many areas machine learning is revolutionizing marketing.

The best marketers are using machine learning to understand, anticipate and act on the problems their sales prospects are trying to solve faster and with more clarity than any competitor. Having the insight to tailor content while qualifying leads for sales to close quickly is being fueled by machine learning-based apps capable of learning what’s most effective for each prospect and customer. Machine learning is taking contextual content,  marketing automation including cross-channel marketing campaigns and lead scoring, personalization, and sales forecasting to a new level of accuracy and speed.

The strongest marketing departments rely on a robust set of analytics and Key Performance Indicators (KPIs) to measure their progress towards revenue and customer growth goals. With machine learning, marketing departments will be able to deliver even more significant contributions to revenue growth, strengthening customer relationships in the process.

The following are 10 ways machine learning is revolutionizing marketing today and in the future:

  1. 57% of enterprise executives believe the most significant growth benefit of AI and machine learning will be improving customer experiences and support. 44% believe that AI and machine learning will provide the ability to improve on existing products and services. Marketing departments and the Chief Marketing Officers (CMOs) running them are the leaders devising and launching new strategies to deliver excellent customer experiences and are one of the earliest adopters of machine learning. Orchestrating every aspect of attracting, selling and serving customers is being improved by marketers using machine learning apps to more accurately predict outcomes. Source: Artificial Intelligence: What’s Possible for Enterprises In 2017 (PDF, 16 pp., no opt-in), Forrester, by Mike Gualtieri, November 1, 2016. Courtesy of The Stack.

  1. 58% of enterprises are tackling the most challenging marketing problems with AI and machine learning first, prioritizing personalized customer care, new product development. These “need to do” marketing areas have the highest complexity and highest benefit. Marketers haven’t been putting as much emphasis on the “must do” areas of high benefit and low complexity according to Capgemini’s analysis. These application areas include Chatbots and virtual assistants, reducing revenue churn, facial recognition and product and services recommendations. Source:  Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting. 2017. (PDF, 28 pp., no opt-in).

  1. By 2020, real-time personalized advertising across digital platforms and optimized message targeting accuracy, context and precision will accelerate. The combined effect of these marketing technology improvements will increase sales effectiveness in retail and B2C-based channels. Sales Qualified Lead (SQL) lead generation will also increase, potentially reducing sales cycles and increasing win rates. Source: Can Machines be Creative? How Technology is Transforming Marketing Personalization and Relevance, IDC White Paper Sponsored by Gerry Brown, July 2017.

  1. Analyze and significantly reduce customer churn using machine learning to streamline risk prediction and intervention models. Instead of relying on expensive and time-consuming approaches to minimize customer churn, telecommunications companies and those in high-churn industries are turning to machine learning. The following graphic illustrates how defining risk models help determine how actions aimed at averting churn affect churn impact probability and risk. An intervention model allows marketers to consider how the level of intervention could affect the probability of churn and the amount of customer lifetime value (CLV). Source: Analyzing Customer Churn by using Azure Machine Learning.

  1. Price optimization and price elasticity are growing beyond industries with limited inventories including airlines and hotels, proliferating into manufacturing and services. All marketers are increasingly relying on machine learning to define more competitive, contextually relevant pricing. Machine learning apps are scaling price optimization beyond airlines, hotels, and events to encompass product and services pricing scenarios. Machine learning is being used today to determine pricing elasticity by each product, factoring in channel segment, customer segment, sales period and the product’s position in an overall product line pricing strategy. The following example is from Microsoft Azure’s Interactive Pricing Analytics Pre-Configured Solution (PCS). Source: Azure Cortana Interactive Pricing Analytics Pre-Configured Solution.

  1. Improving demand forecasting, assortment efficiency and pricing in retail marketing have the potential to deliver a 2% improvement in Earnings Before Interest & Taxes (EBIT), 20% stock reduction and 2 million fewer product returns a year. In Consumer Packaged Goods (CPQ) and retail marketing organizations, there’s significant potential for AI and machine learning to improve the entire value chain’s performance. McKinsey found that using a concerted approach to applying AI and machine learning across a retailer’s value chains has the potential to deliver a 50% improvement of assortment efficiency and a 30% online sales increase using dynamic pricing. Source:  Artificial Intelligence: The Next Frontier? McKinsey Global Institute (PDF, 80 pp., no opt-in)

  1. Creating and fine-tuning propensity models that guide cross-sell and up-sell strategies by product line, customer segment, and persona. It’s common to find data-driven marketers building and using propensity models to define the products and services with the highest probability of being purchased. Too often propensity models are based on imported data, built in Microsoft Excel, making their ongoing use time-consuming. Machine learning is streamlining creation, fine-tuning and revenue contributions of up-sell and cross-sell strategies by automating the entire progress. The screen below is an example of a propensity model.

  1. Lead scoring accuracy is improving, leading to increased sales that are traceable back to initial marketing campaigns and sales strategies. By using machine learning to qualify the further customer and prospect lists using relevant data from the web, predictive models including machine learning can better predict ideal customer profiles. Each sales lead’s predictive score becomes a better predictor of potential new sales, helping sales prioritize time, sales efforts and selling strategies. The following two slides are from an excellent webinar Mintigo hosted with Sirius Decisions and Sales Hacker. It’s a fascinating look at how machine learning is improving sales effectiveness. Source: Give Your SDRs An Unfair Advantage with Predictive (webinar slides on Slideshare).

  1. Identifying and defining the sales projections of specific customer segments and microsegments using RFM (recency, frequency and monetary) modeling within machine learning apps is becoming pervasive. Using RFM analysis as part of a machine learning initiative can provide accurate definitions of the best customers, most loyal, biggest spenders, almost lost, lost customers and lost cheap customers.
  2. Optimizing the marketing mix by determining which sales offers, incentive and programs are presented to which prospects through which channels is another way machine learning is revolutionizing marketing. Specific sales offers are created supported by contextual content, offers, and incentives. These items are made available to an optimization engine which uses machine learning logic to continually try to predict the best combination of marketing mix elements that will lead to a new sale, up-sell or cross-sell. Amazon’s product recommendation feature is an example of how their e-commerce site is using machine learning to increase up-sell, cross-sell and recommended products revenue.

Data Sources On Machine Learning’s Impact On Marketing:

4 Ways to Use Machine Learning in Marketing Automation, Medium, March 30, 2017

84 percent of B2C marketing organizations are implementing or expanding AI in 2018. Infographic. Amplero.
AI, Machine Learning, and their Application for Growth, Adelyn Zhou. SlideShare/LinkedIn.  Feb. 8, 2018.

AI: The Next Generation of Marketing Driving Competitive Advantage throughout the Customer Life Cycle (PDF, 10 pp., no opt-in), Forrester, February 2017.

An Executive’s Guide to Machine Learning, McKinsey Quarterly. June 2015.

Artificial Intelligence for Marketers 2018: Finding Value beyond the Hype, eMarketer. (PDF, 20 pp., no opt-in). October 2017

Artificial Intelligence: The Next Frontier? McKinsey Global Institute (PDF, 80 pp., no opt-in)

Artificial Intelligence: The Ultimate Technological Disruption Ascends, Woodside Capital Partners. (PDF, 111 pp., no opt-in). January 2017.

AWS Announces Amazon Machine Learning Solutions Lab, Marketing Technology Insights

B2B Predictive Marketing Analytics Platforms: A Marketer’s Guide, (PDF, 36 pp., no opt-in) Marketing Land Research Report.
Four Use Cases of Machine Learning in Marketing, June 28, 2018, Martech Advisor,
How Artificial Intelligence and Machine Learning Will Reshape Small Businesses, SMB Group (PDF, 8 pp., no opt-in) May 2017.

How Machine Learning Helps Sales Success (PDF, 12 pp., no opt-in) Cognizant

Inside Salesforce Einstein Artificial Intelligence A Look at Salesforce Einstein Capabilities, Use Cases and Challenges, Doug Henschen, Constellation Research, February 15, 2017

Machine Learning for Marketers (PDF, 91 pp., no opt-in) iPullRank

Machine Learning Marketing – Expert Consensus of 51 Executives and Startups, TechEmergence. May 15, 2017.

Marketing & Sales Big Data, Analytics, and the Future of Marketing & Sales, (PDF, 60 pp., no opt-in), McKinsey & Company.

Sizing the prize – What’s the real value of AI for your business and how can you capitalize? (PDF, 32 pp., no opt-in) PwC, 2017.

The New Frontier of Price Optimization, MIT Technology Review. September 07, 2017.

The Power Of Customer Context, Forrester (PDF, 20 pp., no opt-in) Carlton A. Doty, April 14, 2014. Provided courtesy of Pegasystems.

Turning AI into concrete value: the successful implementers’ toolkit, Capgemini Consulting. 2017. (PDF, 28 pp., no opt-in)

Using machine learning for insurance pricing optimization, Google Cloud Big Data and Machine Learning Blog, March 29, 2017

What Marketers Can Expect from AI in 2018, Jacob Shama. Mintigo. January 16, 2018.

Roundup Of Machine Learning Forecasts And Market Estimates, 2018

  • Machine learning patents grew at a 34% Compound Annual Growth Rate (CAGR) between 2013 and 2017, the third-fastest growing category of all patents granted.
  • International Data Corporation (IDC) forecasts that spending on AI and ML will grow from $12B in 2017 to $57.6B by 2021.
  • Deloitte Global predicts the number of machine learning pilots and implementations will double in 2018 compared to 2017, and double again by 2020.

These and many other fascinating insights are from the latest series of machine learning market forecasts, market estimates, and projections. Machine learning’s potential impact across many of the world’s most data-prolific industries continues to fuel venture capital investment, private equity (PE) funding, mergers, and acquisitions all focused on winning the race of Intellectual Property (IP) and patents in this field. One of the fastest growing areas of machine learning IP is the development of custom chipsets. Deloitte Global is predicting up to 800K machine learning chips will be in use across global data centers this year. Enterprises are increasing their research, investment, and piloting of machine learning programs in 2018. And while the methodologies all vary across the many sources of forecasts, market estimates, and projections, all reflect how machine learning is improving the acuity and insights of companies on how to grow faster and more profitably. Key takeaways from the collection of machine learning market forecasts, market estimates and projections include the following:

  • Within the Business Intelligence (BI) & analytics market, Data Science platforms that support machine learning are predicted to grow at a 13% CAGR through 2021. Data Science platforms will outperform the broader BI & analytics market, which is predicted to grow at an 8% CAGR in the same period. Data Science platforms will grow in value from $3B in 2017 to $4.8B in 2021. Source: An Investors’ Guide to Artificial Intelligence, J.P. Morgan. November 27, 2017 (110 pp., PDF, no opt-in).

  • Machine learning patents grew at a 34% Compound Annual Growth Rate (CAGR) between 2013 and 2017, the third-fastest growing category of all patents granted. IBM, Microsoft, Google, LinkedIn, Facebook, Intel, and Fujitsu were the seven biggest ML patent producers in 2017. Source: IFI Claims Patent Services (Patent Analytics) 8 Fastest Growing Technologies SlideShare Presentation.

  • 61% of organizations most frequently picked Machine Learning / Artificial Intelligence as their company’s most significant data initiative for next year. Of those respondent organizations indicating they actively use Machine Learning (ML) and Artificial Intelligence (AI), 58% percent indicated they ran models in production. Source: 2018 Outlook: Machine Learning and Artificial Intelligence, A Survey of 1,600+ Data Professionals (14 pp., PDF, no opt-in).

  • Tech market leaders including Amazon, Apple, Google, Tesla, and Microsoft are leading their industry sectors by a wide margin in machine learning (ML) and AI investment. Each is designing ML into future-generation products and using ML and AI to improve customer experiences and improve the efficiency of selling channels. Source: Will You Embrace AI Fast Enough? AT Kearney, January 2018.

  • Deloitte Global predicts the number of machine learning pilots and implementations will double in 2018 compared to 2017, and double again by 2020. Factors driving the increasing pace of ML pilots include more pervasive support of Application Program Interfaces (APIs), automating data science tasks, reducing the need for training data, accelerating training and greater insight into explaining results. Source: Deloitte Global Predictions 2018 Infographics.

  • 60% of organizations at varying stages of machine learning adoption, with nearly half (45%) saying the technology has led to more extensive data analysis & insights. 35% can complete faster data analysis and increased the speed of insight, delivering greater acuity to their organizations. 35% are also finding that machine learning is enhancing their R&D capabilities for next-generation products. Source: Google & MIT Technology Review study: Machine Learning: The New Proving Ground for Competitive Advantage (10 pp., PDF, no opt-in).

  • McKinsey estimates that total annual external investment in AI was between $8B to $12B in 2016, with machine learning attracting nearly 60% of that investment. McKinsey estimates that total annual external investment in AI was between $8B to $12B in 2016, with machine learning attracting nearly 60% of that investment. Robotics and speech recognition are two of the most popular investment areas. Investors are most favoring machine learning startups due to quickness code-based start-ups have at scaling up to include new features fast. Software-based machine learning startups are preferred over their more cost-intensive machine-based robotics counterparts that often don’t have their software counterparts do. As a result of these factors and more, Corporate M&A is soaring in this area. The following graphic illustrates the distribution of external investments by category from the study. Source: McKinsey Global Institute Study, Artificial Intelligence, The Next Digital Frontier (80 pp., PDF, free, no opt-in).

  • Deloitte Global is predicting machine learning chips used in data centers will grow from a 100K to 200K run rate in 2016 to 800K this year. At least 25% of these will be Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASICs). Deloitte found the Total Available Market (TAM) for Machine Learning (ML) Accelerator technologies could potentially reach $26B by 2020. Source: Deloitte Global Predictions 2018.

  • Amazon is relying on machine learning to improve customer experiences in key areas of their business including product recommendations, substitute product prediction, fraud detection, meta-data validation and knowledge acquisition. For additional details, please see the presentation, Machine Learning At Amazon, Amazon Web Services (47 pp., PDF no opt-in).

Sources of Market Data on Machine Learning:

2018 Outlook: Machine Learning and Artificial Intelligence, A Survey of 1,600+ Data Professionals. MEMSQL. (14 pp., PDF, no opt-in)

Advice for applying Machine Learning, Andrew Ng, Stanford University. (30 pp., PDF, no opt-in)

An Executive’s Guide to Machine Learning, McKinsey Quarterly. June 2015

An Investors’ Guide to Artificial Intelligence, J.P. Morgan. November 27, 2017 (110 pp., PDF, no opt-in)

Artificial intelligence and machine learning in financial services Market developments and financial stability implications, Financial Stability Board. (45 pp., PDF, no opt-in)

Big Data and AI Strategies Machine Learning and Alternative Data Approach to Investing, J.P. Morgan. (280 pp., PDF. No opt-in).

Google & MIT Technology Review study: Machine Learning: The New Proving Ground for Competitive Advantage (10 pp., PDF, no opt-in).

Hitting the accelerator: the next generation of machine-learning chips, Deloitte. (6 pp., PDF, no opt-in).

How Do Machines Learn? Algorithms are the Key to Machine Learning. Booz Allen Hamilton. (Infographic)

IBM Predicts Demand For Data Scientists Will Soar 28% By 2020, Forbes. May 13, 2017

Machine Learning At Amazon, Amazon Web Services (47 pp., PDF no opt-in).

Machine Learning Evolution (infographic). PwC. April 17, 2017 Machine learning: things are getting intense. Deloitte (6 pp., PDF. No opt-in)

Machine Learning: The Power and Promise Of Computers That Learn By Example. The Royal Society’s Machine Learning Project (128 pp., PDF, no opt-in)

McKinsey Global Institute StudyArtificial Intelligence, The Next Digital Frontier (80 pp., PDF, free, no opt-in)

McKinsey’s State Of Machine Learning And AI, 2017, Forbes, July 9, 2017

Predictions 2017: Artificial Intelligence Will Drive The Insights Revolution. Forrester, November 2, 2016 (9 pp., PDF, no opt-in)

Risks And Rewards: Scenarios around the economic impact of machine learning, The Economist Intelligence Unit. (80 pp., PDF, no opt-in)

Smartening up with Artificial Intelligence (AI) – What’s in it for Germany and its Industrial Sector? Digital/McKinsey & Company. (52 pp., PDF, no opt-in)

So What Is Machine Learning Anyway?  Business Insider. Nov. 23, 2017

The 10 Most Innovative Companies In AI/Machine Learning 2017, Wired

The Business Impact and Use Cases for Artificial Intelligence. Gartner (28 pp., PDF, no opt-in)

The Build-Or-Buy Dilemma In AIBoston Consulting Group. January 4, 2018.

The Next Generation of Medicine: Artificial Intelligence and Machine Learning, TM Capital (25 pp., PDF, free, opt-in)

The Roadmap to Enterprise AI, Rage Networks Brief based on Gartner research. (17 pp., PDF, no opt-in)

Will You Embrace AI Fast Enough? AT Kearney. January 2018

 

Machine Learning’s Greatest Potential Is Driving Revenue In The Enterprise

  • Enterprise investments in machine learning will nearly double over the next three years, reaching 64% adoption by 2020.
  • International Data Corporation (IDC) is forecasting spending on artificial intelligence (AI) and machine learning will grow from $8B in 2016 to $47B by 2020.
  • 89% of CIOs are either planning to use or are using machine learning in their organizations today.
  • 53% of CIOs say machine learning is one of their core priorities as their role expands from traditional IT operations management to business strategists.
  • CIOs are struggling to find the skills they need to build their machine learning models today, especially in financial services.

These and many other insights are from the recently published study, Global CIO Point of View. The entire report is downloadable here (PDF, 24 pp., no opt-in). ServiceNow and Oxford Economics collaborated on this survey of 500 CIOs in 11 countries on three continents, spanning 25 industries. In addition to the CIO interviews, leading experts in machine learning and its impact on enterprise performance contributed to the study. For additional details on the methodology, please see page 4 of the study and an online description of the CIO Survey Methodology here.

Digital transformation is a cornerstone of machine learning adoption. 72% of CIOs have responsibility for digital transformation initiatives that drive machine learning adoption. The survey found that the greater the level of digital transformation success, the more likely machine learning-based programs and strategies would succeed. IDC predicts that 40% of digital transformation initiatives will be supported by machine learning and artificial intelligence by 2019.

Key takeaways from the study include the following:

  • 90% of CIOs championing machine learning in their organizations today expect improved decision support that drives greater topline revenue growth. CIOs who are early adopters are most likely to pilot, evaluate and integrate machine learning into their enterprises when there is a clear connection to driving business results. Many CIO compensation plans now include business growth and revenue goals, making the revenue potential of new technologies a high priority.
  • 89% of CIOs are either planning to use or using machine learning in their organizations today. The majority, 40%, are in the research and planning phases of deployment, with an additional 26% piloting machine learning. 20% are using machine learning in some areas of their business, and 3% have successfully deployed enterprise-wide. The following graphic shows the percentage of respondents by stage of their machine learning journey.

  • Machine learning is a key supporting technology leading the majority Finance, Sales & Marketing, and Operations Management decisions today. Human intervention is still required across the spectrum of decision-making areas including Security Operations, Customer Management, Call Center Management, Operations Management, Finance and Sales & Marketing. The study predicts that by 2020, machine learning apps will have automated 70% of Security Operations queries and 30% of Customer Management ones.

  • Automation of repetitive tasks (68%), making complex decisions (54%) and recognizing data patterns (40%) are the top three most important capabilities CIOs of machine learning CIOs are most interested in.  Establishing links between events and supervised learning (both 32%), making predictions (31%) and assisting in making basic decisions (18%) are additional capabilities CIOs are looking for machine learning to accelerate. In financial services, machine learning apps are reviewing loan documents, sorting applications to broad parameters, and approving loans faster than had been possible before.

  • Machine learning adoption and confidence by CIOs varies by region, with North America in the lead (72%) followed by Asia-Pacific (61%). Just over half of European CIOs (58%) expect value from machine learning and decision automation to their company’s overall strategy. North American CIOs are more likely than others to expect value from machine learning and decision automation across a range of business areas, including overall strategy (72%, vs. 61% in Asia Pacific and 58% in Europe). North American CIOs also expect greater results from sales and marketing (63%, vs. 47% Asia-Pacific and 38% in Europe); procurement (50%, vs. 34% in Asia-Pacific and 34% in Europe); and product development (48%, vs. 29% in Asia-Pacific and 29% in Europe).
  • CIOs challenging the status quo of their organization’s analytics direction are more likely to rely on roadmaps for defining and selling their vision of machine learning’s revenue contributions. More than 70% of early adopter CIOs have developed a roadmap for future business process changes compared with just 33% of average CIOs. Of the CIOs and senior management teams in financial services, the majority are looking at how machine learning can increase customer satisfaction, lifetime customer value, improving revenue growth. 53% of CIOs from our survey say machine learning is one of their core priorities as their role expands from traditional IT operations to business-wide strategy.

Sources: CIOs Cutting Through the Hype and Delivering Real Value from Machine Learning, Survey Shows

10 Charts That Will Change Your Perspective On Artificial Intelligence’s Growth

  • There has been a 14X increase in the number of active AI startups since 2000.
  • Investment into AI start-ups by venture capitalists has increased 6X since 2000.
  • The share of jobs requiring AI skills has grown 4.5X since 2013.

These and many other fascinating insights are from Stanford University’s inaugural AI Index (PDF, no opt-in, 101 pp.). Stanford has undertaken a One Hundred Year Study on Artificial Intelligence (AI100) looking at the effects of AI on people’s lives, basing the inaugural report and index on the initial findings. The study finds “that we’re essentially “flying blind” in our conversations and decision-making related to Artificial Intelligence.” The AI Index is focused on tracking activity and progress on AI initiatives, and to facilitate informed conversations grounded with reliable, verifiable data. All data used to produce the AI Index and report is available at aiindex.org. Please see the AI Index for additional details regarding the methodology used to create each of the following graphs.

The following ten charts from the AI Index report provides insights into AI’s rapid growth:

  • The number of Computer Science academic papers and studies has soared by more than 9X since 1996. Academic studies and research are often the precursors to new intellectual property and patents. The entire Scopus database contains over 200,000 (200,237) papers in the field of Computer Science that have been indexed with the key term “Artificial Intelligence.” The Scopus database contains almost 5 million (4,868,421) papers in the subject area “Computer Science.”

  • There have been a 6X increase in the annual investment levels by venture capital (VC) investors into U.S.-based Ai startups since 2000. Crunchbase, VentureSource, and Sand Hill Econometrics were used to determine the amount of funding invested each year by venture capitalists into startups where AI plays an important role in some key function of the business. The following graphic illustrates the amount of annual funding by VC’s into US AI startups across all funding stages.

  • There has been a 14X increase in the number of active AI startups since 2000. Crunchbase, VentureSource, and Sand Hill Econometrics were also used for completing this analysis with AI startups in Crunchbase cross-referenced to venture-backed companies in the VentureSource database. Any venture-backed companies from the Crunchbase list that were identified in the VentureSource database were included.

  • The share of jobs requiring AI skills has grown 4.5X since 2013., The growth of the share of US jobs requiring AI skills on the Indeed.com platform was calculated by first identifying AI-related jobs using titles and keywords in descriptions. Job growth is a calculated as a multiple of the share of jobs on the Indeed platform that required AI skills in the U.S. starting in January 2013. The study also calculated the growth of the share of jobs requiring AI skills on the Indeed.com platform, by country. Despite the rapid growth of the Canada and UK. AI job markets, Indeed.com reports they are respectively still 5% and 27% of the absolute size of the US AI job market.

  • Machine Learning, Deep Learning and Natural Language Processing (NLP) are the three most in-demand skills on Monster.com. Just two years ago NLP had been predicted to be the most in-demand skill for application developers creating new AI apps. In addition to skills creating AI apps, machine learning techniques, Python, Java, C++, experience with open source development environments, Spark, MATLAB, and Hadoop are the most in-demand skills. Based on an analysis of Monster.com entries as of today, the median salary is $127,000 in the U.S. for Data Scientists, Senior Data Scientists, Artificial Intelligence Consultants and Machine Learning Managers.

  • Error rates for image labeling have fallen from 28.5% to below 2.5% since 2010. AI’s inflection point for Object Detection task of the Large Scale Visual Recognition Challenge (LSVRC) Competition occurred in 2014. On this specific test, AI is now more accurate than human These findings are from the competition data from the leaderboards for each LSVRC competition hosted on the ImageNet website.

  • Global revenues from AI for enterprise applications is projected to grow from $1.62B in 2018 to $31.2B in 2025 attaining a 52.59% CAGR in the forecast period. Image recognition and tagging, patient data processing, localization and mapping, predictive maintenance, use of algorithms and machine learning to predict and thwart security threats, intelligent recruitment, and HR systems are a few of the many enterprise application use cases predicted to fuel the projected rapid growth of AI in the enterprise. Source: Statista.

  • 84% of enterprises believe investing in AI will lead to greater competitive advantages. 75% believe that AI will open up new businesses while also providing competitors new ways to gain access to their markets. 63% believe the pressure to reduce costs will require the use of AI. Source: Statista.

  • 87% of current AI adopters said they were using or considering using AI for sales forecasting and for improving e-mail marketing. 61% of all respondents said that they currently used or were planning to use AI for sales forecasting. The following graphic compares adoption rates of current AI adopters versus all respondents. Source: Statista.  

Data Science And Machine Learning Jobs Most In-Demand on LinkedIn

  • Machine Learning Engineers, Data Scientists, and Big Data Engineers rank among the top emerging jobs on LinkedIn.
  • Data scientist roles have grown over 650% since 2012, but currently, 35,000 people in the US have data science skills, while hundreds of companies are hiring for those roles.
  • There are currently 1,829 open Machine Learning Engineering positions on LinkedIn.
  • Job growth in the next decade is expected to outstrip growth during the previous decade, creating 11.5M jobs by 2026, according to the U.S. Bureau of Labor Statistics.

These and many other insights are from the recently released LinkedIn 2017 U.S. Emerging Jobs Report. LinkedIn has provided an overview of the methodology in their post, The Fastest-Growing Jobs in the U.S. Based on LinkedIn Data. “Emerging jobs” refers to the job titles that saw the largest growth in frequency over that five year period. LinkedIn reports that based on their analysis, the job market in the U.S. is brimming right now with fresh and exciting opportunities for professionals in a range of emerging roles.

Key takeaways from the study include the following:

  • There are 9.8 times more Machine Learning Engineers working today than five years ago based on LinkedIn’s research, with 1,829 open positions listed on the site today. There are 6.5 times more Data Scientists than five years ago, and 5.5 times more Big Data Developers. The following graphic illustrates the rapid growth of key data scient, machine leanring, big data and full stack developers in addition to sales development and customer success managers.

  • Software engineering is a common starting point for professionals who are in the top five fasting growing jobs today. The career path to Machine Learning Engineer and Big Data Developer begins with a solid software engineering background. The top five highest growth job typical career paths are shown below:

  • The skills most strongly represented across the 20 fastest growing jobs include management, sales, communication, and marketing. Additional skills represented across the highest growing jobs include marketing expertise (analytics and marketing automation), start-ups, Python, software development, analytics, cloud computing and knowledge of retail systems.
  • LinkedIn interviewed 1,200 hiring managers to determine which soft skills are most in-demand and adaptability came out on top. Additional soft skills include culture fit, collaboration, leadership, growth potential, and prioritization.

Sources:

LinkedIn Blog: The Fastest-Growing Jobs in the U.S. Based on LinkedIn Data

LinkedIn’s 2017 U.S. Emerging Jobs Report

Gartner’s Top 10 Predictions For IT In 2018 And Beyond

  • In 2020, AI will become a positive net job motivator, creating 2.3M jobs while eliminating only 1.8M jobs.
  • By 2020, IoT technology will be in 95% of electronics for new product designs.
  • By 2021, 40% of IT staff will be versatilists, holding multiple roles, most of which will be business, rather than technology-related.

These and many other insights are being presented earlier this month at the Gartner Symposium/ITxpo 2017 being held in Orlando, Florida. Gartner’s predictions and the series of assumptions supporting them illustrate how CIOs must seek out and excel in the role of business strategist first, technologist second. In 2018 and beyond CIOs will be more accountable than ever for revenue generation, value creation, and the development and launch of new business models using proven and emerging technologies. Gartner’s ten predictions point to the future of CIOs as collaborators in new business creation, selectively using technologies to accomplish that goal.

The following are Gartner’s ten predictions for IT organizations for 2018 and beyond:

  1. By 2021, early adopter brands that redesign their websites to support visual- and voice-search will increase digital commerce revenue by 30%. Gartner has found that voice-based search queries are the fastest growing mobile search type. Voice and visual search are accelerating mobile browser- and mobile app-based transactions and will continue to in 2018 and beyond. Mobile browser and app-based transactions are as much as 50% of all transactions on many e-commerce sites today. Apple, Facebook, Google and Microsoft’s investments in AI and machine learning will be evident in how quickly their visual- and voice-search technologies accelerate in the next two years.
  2. By 2020, five of the top seven digital giants will willfully “self-disrupt” to create their next leadership opportunity. The top digital giants include Alibaba, Amazon, Apple, Baidu, Facebook, Google, Microsoft, and Tencent. Examples of self-disruption include AWS Lambda versus traditional cloud virtual machines, Alexa versus screen-based e-commerce, and Apple Face ID versus Touch ID.
  3. By the end of 2020, the banking industry will derive $1B in business value from the use of blockchain-based cryptocurrencies. Gartner estimates that the current combined value of cryptocurrencies in circulation worldwide is $155B (as of October 2017), and this value has been increasing as tokens continue to proliferate and market interest grows. Cryptocurrencies will represent more than half of worldwide blockchain global business value-add through year-end 2023 according to the Gartner predictions study.
  4. By 2022, most people in mature economies will consume more false information than true information. Gartner warns that while AI is proving to be very effective in creating new information, it is just as effective at distorting data to create false information as well. Gartner predicts that before 2020, untrue information will fuel a major financial fraud made possible through high-quality falsehoods moving the financial markets worldwide. By the same year, no significant internet company will fully succeed in its attempts to mitigate this problem. Within three years a significant country will pass regulations or laws seeking to curb the spread of AI-generated false information.
  5. By 2020, AI-driven creation of “counterfeit reality,” or fake content, will outpace AI’s ability to detect it, fomenting digital distrust. AI and machine learning systems today can categorize the content of images faster and more consistently accurate than humans. Gartner cautions that by 2018, a counterfeit video used in a satirical context will begin a public debate once accepted as real by one or both sides of the political spectrum. In the next year, there will be a 10-fold increase in commercial projects to detect fake news according to the predictions study.
  6. By 2021, more than 50% of enterprises will be spending more per annum on bots and chatbot creations than traditional mobile app developments. Gartner is predicting that by 2020, 55% of all large enterprises will have deployed (used in production) at least one bot or chatbot. Rapid advances in natural-language processing (NLP) make today’s chatbots much better at recognizing the user intent than previous generations. According to Gartner’s predictions study, NLP is used to determine the entry point for the decision tree in a chatbot, but a majority of chatbots still use scripted responses in a decision tree.
  7. By 2021, 40% of IT staff will be versatilists, holding multiple roles, most of which will be business, rather than technology-related. By 2019, IT technical specialist hires will fall by more than 5%. Gartner predicts that 50% of enterprises will formalize IT versatilist profiles and job descriptions. 20% of IT organizations will hire versatilists to scale digital business. IT technical specialist employees will fall to 75% of 2017 levels.
  8. In 2020, AI will become a positive net job motivator, creating 2.3M jobs while eliminating only 1.8M jobs. By 2020, AI-related job creation will cross into positive territory, reaching 2 million net-new jobs in 2025. Global IT services firms will have massive job churn in 2018, adding 100,000 jobs and dropping 80,000. By 2021 Gartner predicts, AI augmentation will generate $2.9T in business value and recover 6.2B hours of worker productivity.
  9. By 2020, IoT technology will be in 95% of electronics for new product designs. Gartner predicts IoT-enabled products with smartphone activation emerging at the beginning of 2019.
  10. Through 2022, half of all security budgets for IoT will go to fault remediation, recalls and safety failures rather than protection. Gartner predicts IoT spending will increase sharply after 2020 following better methods of applying security patterns cross-industry in IoT security architectures, growing at more than 50% compound annual growth rate (CAGR) over current rates.The total IoT security market for products will reach $840.5M by 2020, and a 24% CAGR for IoT security from 2013 through 2020. Combining IoT security services, safety systems, and physical security will lead to a fast-growing global market. Gartner predicts exponential growth in this area, exceeding more than $5B in global spending by year-end 2020.

Gartner has also made an infographic available of the top 10 Strategic Technology Trends for 2018, in addition to an insightful article on Smarter with Gartner.  You can find the article here, at Gartner Top 10 Strategic Technology Trends for 2018.

Sources:

Gartner Reveals Top Predictions for IT Organizations and Users in 2018 and Beyond

Smarter With Gartner, Gartner Top 10 Strategic Technology Trends for 2018

Top Strategic Predictions for 2018 and Beyond: Pace Yourself, for Sanity’s Sake (client access reqd)

How Artificial Intelligence Is Revolutionizing Business In 2017

  • 84% of respondents say AI will enable them to obtain or sustain a competitive advantage.
  • 83% believe AI is a strategic priority for their businesses today.
  • 75% state that AI will allow them to move into new businesses and ventures.

These and many other fascinating insights are from the Boston Consulting Group and MIT Sloan Management Review study published this week, Reshaping Business With Artificial Intelligence. An online summary of the report is available here. The survey is based on interviews with more than 3,000 business executives, managers, and analysts in 112 countries and 21 industries. For additional details regarding the methodology, please see page 4.

The research found significant gaps between companies who have already adopted and understand Artificial Intelligence (AI) and those lagging. AI early adopters invest heavily in analytics expertise and ensuring the quality of algorithms and data can scale across their enterprise-wide information and knowledge needs. The leading companies who excel at using AI to plan new businesses and streamline existing processes all have solid senior management support for each AI initiative.

Key takeaways include the following:

  • 72% of respondents in the technology, media, and telecommunications industry expect AI to have a significant impact on product offerings in the next five years. The technology, media and telecommunications industry has the highest expectations for AI to accelerate new product and service offerings of all industries tracked in the study, projecting a 52% point increase in the next five years. AI-based improvements are expected to deliver Business Process Outsourcing (BPO) gains in the Financial Services and Professional Services industries as well. The following graphic compares expectations for AI’s expected contributions to business offerings and process improvements over the next five years by industry.

  • Customer-facing activities including marketing automation, support, and service in addition to IT and supply chain management are predicted to be the most affected areas by AI in the next five years. Demand management, supply chain optimization, more efficient distributed order management systems, and Enterprise Resource Planning (ERP) systems that can scale to support new business models are a few of the many areas AI will make contributions to the in the next five years. The following graphic provides an overview of operations, IT, customer-facing, and corporate center functions where AI is predicted to contribute.

  • 84% of respondents say AI will enable them to obtain or sustain a competitive advantage. 75% state that AI will allow them to move into new businesses and ventures. The research shows that AI will be the catalyst of entirely new business models and change the competitive landscape of entire industries in the next five years. 69% of respondents expect incumbent competitors in their industry to use AI to gain an advantage. 63% believe the pressure to reduce costs will require their organizations to use AI in the next five years.

  • Despite high expectations for AI, only 23% of respondents have incorporated it into processes and product and service offerings today. An additional 23% have one or more pilots in progress, and 54% have no adoption plans in progress, 22% of which have no current plans. The following graphic provides insights into the current adoption of AI with survey respondents.

  • By completing a cluster analysis of survey respondents based on AI understanding and adoption questions, four distinct maturity groups emerged including Pioneers, Investigators, Experimenters, and Passives. 19% of the respondent base is Pioneers or those organizations who understand and are adopting AI. The study says that “these organizations are on the leading edge of incorporating AI into both their organization’s offerings and internal processes.” Investigators (32%) are organizations that understand AI but are not deploying it beyond the pilot stage. Experimenters (13%) are organizations that are piloting or adopting AI without deep understanding. Passives (36%) are organizations with no adoption or much knowledge of AI.

  • Pioneers and Investigators are finding new ways to use AI to create entirely new sources of business value. Pioneers (91%) and Investigators (90%) are much more likely to report that their organization recognizes how AI affects business value than Experimenters (32%) and Passives (23%). One of the most differentiating aspects of the four maturity clusters is understanding the differences and value of investing in high-quality data and advanced AI algorithms. Compared to Passives, Pioneers are 12 times more likely to understand the process for training algorithms and ten times more likely to comprehend the development costs of AI-based products and services.

  • Organizations in the Pioneer cluster excel at analytics expertise versus competitors and have exceptional data governance processes in place, further accelerating their AI-driven growth. Pioneers are excellent at change management, citing their senior management’s vision and leadership as a foundational strength in accomplishing their AI-based initiative Early adopter Pioneers are also adept at product development, capable of changing existing products and services to take advantage of new technologies.

  • 61% of all organizations interviewed see developing an AI strategy as urgent, yet only 50% have one done today. The research found that regarding company size, the largest companies (those with more than 100K employees) are the most likely to have an AI strategy, but only half (56%) have one. The following graphic compares the percentage of respondents by maturity cluster who say developing a plan for Al is urgent for their organization relative to those that have a strategy in place today.

  • 70% of respondents are personally looking forward to delegating the more mundane, repetitive aspects of their jobs to AI. 84% believe employees will need to change their skill sets to excel at delivering AI-based initiatives and strategies. Taking this approach provides career growth and a chance to become more marketable for many whose jobs that are being increasingly automated. Cautious optimism regarding AI’s effects on employment dominates early adopter organizations, not dire fatalism. The bottom line is that AI is providing opportunities for career growth that will only accelerate in the future. Those that seize the chance to learn and earn more will end up having AI removing the mundane tasks from their jobs, leaving more time for the most challenging and rewarding work.

Gartner’s Hype Cycle for Emerging Technologies, 2017 Adds 5G, Edge Computing For First Time

  • Gartner added eight new technologies to the Hype Cycle this year including 5G, Artificial General Intelligence, Deep Learning, Edge Computing, Serverless PaaS.
  • Virtual Personal Assistants, Personal Analytics, Data Broker PaaS (dbrPaaS) are no longer included in the Hype Cycle for Emerging Technologies.

The Hype Cycle for Emerging Technologies, 2017 provides insights gained from evaluations of more than 2,000 technologies the research and advisory firms tracks. From this large base of technologies, the technologies that show the most potential for delivering a competitive advantage over the next five to 10 years are included in the Hype Cycle.

The eight technologies added to the Hype Cycle this year include 5G, Artificial General Intelligence, Deep Learning, Deep Reinforcement Learning, Digital Twin, Edge Computing, Serverless PaaS and Cognitive Computing. Ten technologies not included in the hype cycle for 2017 include 802.11ax, Affective Computing, Context Brokering, Gesture Control Devices, Data Broker PaaS (dbrPaaS), Micro Data Centers, Natural-Language Question Answering, Personal Analytics, Smart Data Discovery and Virtual Personal Assistants.

The three most dominant trends include Artifical Intelligence (AI) Everywhere, Transparently Immersive Experiences, and Digital Platforms. Gartner believes that key platform-enabling technologies are 5G, Digital Twin, Edge Computing, Blockchain, IoT Platforms, Neuromorphic Hardware, Quantum Computing, Serverless PaaS and Software-Defined Security.

Key takeaways from this year’s Hype Cycle include the following:

  • Heavy R&D spending from Amazon, Apple, Baidu, Google, IBM, Microsoft, and Facebook is fueling a race for Deep Learning and Machine Learning patents today and will accelerate in the future – The race is on for Intellectual Property (IP) in deep learning and machine learning today. The success of Amazon Alexa, Apple Siri, Google’s Google Now, Microsoft’s Cortana and others are making this area the top priority for R&D investment by these companies today. Gartner predicts deep-learning applications and tools will be a standard component in 80% of data scientists’ tool boxes by 2018. Amazon Machine Learning is available on Amazon Web Services today, accessible here.  Apple has also launched a Machine Learning JournalBaidu Research provides a site full of useful information on their ongoing research and development as well. Google Research is one of the most comprehensive of all, with a wealth of publications and research results.  IBM’s AI and Cognitive Computing site can be found here. The Facebook Research site provides a wealth of information on 11 core technologies their R&D team is working on right now. Many of these sites also list open positions on their R&D teams.
  • 5G adoption in the coming decade will bring significant gains for security, scalability, and speed of global cellular networks – Gartner predicts that by 2020, 3% of network-based mobile communications service providers (CSPs) will launch 5G networks commercially. The Hype Cycle report mentions that from 2018 through 2022 organizations will most often utilize 5G to support IoT communications, high definition video and fixed wireless access. AT&T, NTT Docomo, Sprint USA, Telstra, T-Mobile, and Verizon have all announced plans to launch 5G services this year and next.
  • Artificial General Intelligence is going to become pervasive during the next decade, becoming the foundation of AI as a Service – Gartner predicts that AI as a Service will be the enabling core technology that leads to the convergence of AI Everywhere, Transparently Immersive Experiences and Digital Platforms. The research firm is also predicting 4D Printing, Autonomous Vehicles, Brain-Computer Interfaces, Human Augmentation, Quantum Computing, Smart Dust and Volumetric Displays will reach mainstream adoption.

Sources:

Gartner Identifies Three Megatrends That Will Drive Digital Business Into the Next Decade

Gartner Hype Cycle for Emerging Technologies, 2017 (client access required)

%d bloggers like this: