Skip to content
Advertisements

Posts tagged ‘IoT’

86% Of Enterprises Increasing IoT Spending In 2019

  • Enterprises increased their investments in IoT by 4% in 2018 over 2017, spending an average of $4.6M this year.
  • 38% of enterprises have company-wide IoT deployments in production today.
  • 84% of enterprises expect to complete their IoT implementations within two years.
  • 82% of enterprises share information from their IoT solutions with employees more than once a day; 67% are sharing data in real-time or near real-time.

These and many other fascinating insights are from Zebra Technologies’ second annual Intelligent Enterprise Index (PDF, 25 pp., no opt-in). The index is based on the list of criteria created during the 2016 Strategic Innovation Symposium: The Intelligent Enterprise hosted by the Technology and Entrepreneurship Center at Harvard (TECH) in 2016. An Intelligent Enterprise is one that leverages ties between the physical and digital worlds to enhance visibility and mobilize actionable insights that create better customer experiences, drive operational efficiencies or enable new business models, “ according to Tom Bianculli, Vice President, Technology, Zebra Technologies.

The metrics comprising the index are designed to interpret where companies are on their journeys to becoming Intelligent Enterprises. The following are the 11 metrics that are combined to create the Index: IoT Vision, Business Engagement, Technology Solution Partner, Adoption Plan, Change Management Plan, Point of use Application, Security & Standards, Lifetime Plan, Architecture/Infrastructure, Data Plan and Intelligent Analysis. An online survey of 918 IT decision makers from global enterprises competing in healthcare, manufacturing, retail and transportation and logistics industries was completed in August 2018. IT decision makers from nine countries were interviewed, including the U.S., U.K./Great Britain, France, Germany, Mexico, Brazil, China, India, and Australia/New Zealand. Please see pages 24 and 25 for additional details regarding the methodology.

Key insights gained from the Intelligent Enterprise Index include the following:

  • 86% of enterprises expect to increase their spending on IoT in 2019 and beyond. Enterprises increased their investments in IoT by 4% in 2018 over 2017, spending an average of $4.6M this year. Nearly half of enterprises globally (49%) interviewed are aggressively pursuing IoT investments with the goal of digitally transforming their business models this decade. 38% of enterprises have company-wide IoT deployments today, and 55% have an IoT vision and are currently executing their IoT plans.

  • 49% of enterprises are on the path to becoming an Intelligent Enterprise, scoring between 50 – 75 points on the index. The percent of enterprises scoring 75 or higher on the Intelligent Enterprise Index gained the greatest of all categories in the last 12 months, increasing from 5% to 11% of all respondents. The majority of enterprises are improving how well they scale the integration of their physical and digital worlds to enhance visibility and mobilize actionable insights. The more real-time the integration unifying the physical and digital worlds of their business models, the better the customer experiences and operational efficiencies attained.

  • The majority of enterprises (82%) share information from their IoT solutions with employees more than once a day, and 67% are sharing data in real-time or near real-time. 43% of enterprises say information from their IoT solutions is shared with employees in real-time, up 38% from last year’s index. 76% of survey respondents are from retailing, manufacturing, and transportation & logistics. Gaining greater accuracy of reporting across supplier networks, improving product quality visibility and more real-time data from distribution channels are the growth catalysts companies competing in retail, manufacturing, and transportation & logistics need to grow. These findings reflect how enterprises are using real-time data monitoring to drive quicker, more accurate decisions and be more discerning in which strategies they choose. Please click on the graphic to expand to view specifics.

  • Enterprises continue to place a high priority on IoT network security and standards with real-time monitoring becoming the norm. 58% of enterprises are monitoring their IoT networks constantly, up from 49%, and a record number of enterprises (69%) have a pre-emptive, proactive approach to IT security and network management. It’s time enterprises consider every identity a new security perimeter, including IoT sensors, smart, connected products, and the on-premise and cloud networks supporting them. Enterprises need to pursue a “never trust, always verify, enforce least privilege” approach and are turning to Zero Trust Privilege (ZTP) to solve this challenge today. ZTP grants least privilege access based on verifying who is requesting access, the context of their request, and ascertaining the risk of the access environment. Designed to secure infrastructure, DevOps, cloud, containers, Big Data, and scale to protect a wide spectrum of use cases, ZTP is replacing legacy approaches to Privileged Access Management by minimizing attack surfaces, improving audit and compliance visibility, and reducing risk, complexity, and costs for enterprises. Leaders in this field include Centrify for Privileged Access Management, Idaptive, (a new company soon to be spun out from Centrify) for Next-Gen Access, as well as CiscoF5 and Palo Alto Networks in networking.

  • Analytics and security dominate enterprise’ IoT management plans this year. 66% of enterprises are prioritizing analytics as their highest IoT data management priority this year, and 63% an actively investing in IoT security. The majority are replacing legacy approaches to Privilege Access Management (PAM) with ZTP.  Enterprises competing in healthcare and financial services are leading ZTS’ adoption today, in addition to government agencies globally. Enterprises investing in Lifecycle management solutions increased 11% between 2017 and 2018. Please click on the graphic to expand to view specifics.

Advertisements

The State Of IoT Intelligence, 2018

  • Sales, Marketing and Operations are most active early adopters of IoT today.
  • Early adopters most often initiate pilots to drive revenue and gain operational efficiencies faster than anticipated.
  • 32% of enterprises are investing in IoT, and 48% are planning to in 2019.
  • IoT early adopters lead their industries in advanced and predictive analytics adoption.

These and many other fascinating insights are from Dresner Advisory Services’ latest report,  2018 IoT Intelligence® Market Study, in its 4th year of publication. The study concentrates on end-user interest in and demand for business intelligence in IoT. The study also examines key related technologies such as location intelligence, end-user data preparation, cloud computing, advanced and predictive analytics, and big data analytics. “While the market is still in an early stage, we believe that IoT Intelligence, the means to understand and leverage IoT data, will continue to expand as organizations mature in their collection and leverage of sensor level data,” said Howard Dresner, founder, and chief research officer at Dresner Advisory Services. 70% of respondents work at North American organizations (including the United States, Canada, and Puerto Rico). EMEA accounts for about 20%, and the remainder is distributed across Asia-Pacific and Latin America. Please see pages 11, 15 through 18 of the study for specifics regarding the methodology and respondent demographics.

Key insights gained from the study include the following:

  • Sales, Marketing and Operations are most active early adopters of IoT today. Looking to capitalize on IoT’s potential to gain real-time customer feedback on products’ and services’ performance, Sales and Marketing lead all departments in their prioritizing IoT’s value in the enterprises. 12% of Operations leaders say that IoT is critical to attaining their goals. Executive Management and Finance have yet to see the value that Sales, Marketing and Operations do.

  • Manufacturers see IoT as the most critical to achieving their product quality, production scheduling and supply chain orchestration goals. Insurance industry leaders also view IoT as critical to operations as their business models are now concentrating on automating inventory and safety management. Insurance firms also track vehicles in shipping and logistics fleets to gain greater visibility into how route operations can be optimized at the lowest possible risk of accidents. Financial Services and Healthcare are the next most interested in IoT with Higher Education and Business Services assign the lowest levels of importance by industry.

  • Investment in IoT analytics, application development and defining accurate, reliable metrics to guide development is the most critical aspect of IoT adoption today. Investments in the data supply chain including data capture, movement, data prep, and management is the second-most critical area followed by investments in IoT infrastructure.  Analytics, application development, and accurate, reliable metrics guiding DevOps are consistent with the study’s finding that early adopters have an excellent track record adopting and applying advanced and predictive analytics to challenging logistical, operations, sales, and marketing problems.

  • IoT early adopters or advocates prioritize dashboards, reporting, IoT use cases that provide data streams integral to analytics, advanced visualization, and data mining. IoT early adopters and the broader respondent base differ most in the prioritization of IT analytics, location intelligence, integration with operational processes, in-memory analysis, open source software, and edge computing. The data reflects how IoT early adopters quickly become more conversant in emerging technologies with the goal of achieving exponential scale across analytics and IoT platforms.

  • The criticality of advanced and predictive analytics to all leaders surveyed is at an all-time high. Attaining a (weighted-mean) importance score of 3.6 on a 5.0 scale, advanced and predictive analytics is today considered “critical” or “very important” to a majority of respondents. Despite a mild decline in 2017, importance sentiment (the perceived criticality of advanced and predictive analytics) is on an uptrend across the five years of our study. Mastery of advanced and predictive analytics is a leading indicator of IoT adoption, indicating the potential for more analytics pilots and in-production IoT projects next year.

  • The most valuable features for advanced and predictive analytics apps include support for a range of regression models, hierarchical clustering, descriptive statistics, and recommendation engine support. Model management is important to more than 90% of respondents, further indicating IoT analytics scale is a goal many are pursuing. Geospatial analysis (highly associated with mapping, populations, demographics, and other web-generated data), Bayesian methods, and automatic feature selection is the next most required series of features.

  • Access to advanced analytics for predictive and temporal analysis is the most important usability benefit to IoT adopters today. Second is support for easy iteration, and third is a simple process for continuous modification of models. The study evaluated a detailed set of nine usability benefits that support advanced and predictive activities and processes. All nine benefits are important to respondents, with the last one of a specialist not being required important to a majority of them at 70%.

Reinventing After-Sales Service In A Subscription Economy World

  • 91% of manufacturers are investing in predictive analytics in the next 12 months, and 50% consider Artificial Intelligence (AI) a major planned investment for 2019 to support their subscription-based business models.
  • New subscription business models and smart, connected products are freeing manufacturers up from competing for one-time transaction revenues to recurring revenues based on subscriptions.
  • By 2020, manufacturers are predicting 67% of their product portfolios will be smart, connected products according to an excellent study by Capgemini.
  • 71% of manufacturers are using automated sensors for real-time monitoring and data capture of a product’s condition and performance, yet just 25% have the infrastructure in place to analyze it and maximize product uptime.

Manufacturers need to break their dependence on just selling products to selling services if they’re going to grow. Smart, connected products with IoT sensors embedded in them are the future of subscription business models and a key foundation of the subscription economy.

Product Reliability and Uptime Help Create Subscription Economies

In a subscription economy world, whoever excels at product reliability and uptime grows faster than competitors and defines the market. Airlines with the highest on-time ratings have designed in reliability and uptime as part of their company’s identity; their DNA is based on these goals. Worldwide Business Research (WBR) in collaboration with Syncron, a global provider of cloud-based after-sales service solutions focused on empowering the world’s leading manufacturers to maximize product uptime and deliver exceptional customer experiences, recently surveyed to see how manufacturers are addressing the reliability and uptime challenges so critical to growing subscription business.

The research study, Maximized Product Uptime: The Emerging Industry Standard provides insights into how manufacturers can improve their after-sales service solutions. A copy of the study can be downloaded here (PDF, 23 pp., opt-in). Please see pages 20 – 23 for additional details on the report’s methodology. WBR and Syncron designed the survey to gain a deep understanding of manufacturers’ ability to deliver on their customers increasing demand for maximized product uptime, surveying 200 original equipment manufacturers (OEMs), with respondents evenly split between the U.S. and European markets, as well as 100 equipment end-users

Key insights from the study include the following:

  • 34% of manufacturers are ready to compete in a subscription economy and have created a service strategy based on maximized product uptime. 39% are planning to have one in two years, and 22% are predicting it will be in 2020 or later before they have on in place. Capgemini found that manufacturers’ plans for smart, connected products would extend beyond these projections, making it a challenge of manufacturers to realize the new subscription revenue they’re planning on in the future.

  • 71% of manufacturers are using automated sensors including IoT for real-time monitoring and data capture of a product’s condition and performance, yet just 25% have the infrastructure in place to analyze it and maximize product uptime.  51% of manufacturers have systems in place for analyzing the inbound data generated from sensors, yet report they still have more work to do to make them operational.  The 25% of manufacturers with systems in place and at scale will have at least an 18-month jump on competitors who are just now planning on how to make use of the real-time data streams IoT sensors provide.

  • Predicting part failures before they occur (83%), optimizing product functionality based on usage (67%), and using stronger analytics to evaluate product performance (61%) matter most to manufacturers pursuing subscription models. Autonomous product operation (56%) and implementing stronger analytics on ROI ( 50%) are also extremely important. These findings further underscore how manufacturers need to design in reliability and uptime if they are going to succeed with subscription-based business models.

  • 91% of manufacturers are investing in predictive analytics in the next 12 months, and 50% consider Artificial Intelligence (AI) a major planned investment for 2019.  Creating meaningful data models from the massive amount of manufacturing data being captured using automated sensors and IoT devices is making predictive analytics, AI and machine learning extremely important to manufacturers’ IT planning budgets for 2019 and beyond. Combining predictive analytics, AI and machine learning to gain greater insights into pre-emptive maintenance on each production asset, installed product or device is the goal. Knowing when a machine or product will most likely fail is invaluable in ensuring the highest uptime and service reliability levels possible.

  • 77% of manufacturers say having an after-sales service model is critical to their customers’ success today.  Customers are ready to move beyond the legacy transactional, break-fix model of the past and want a more Amazon-like experience when it comes to uptime and reliability of every device they own as consumers and use at work. Speed, scale and simplicity are the foundational elements of a subscription business model, and the majority of manufacturers surveyed say their customers are leading them into a value-added after-sales service model.

Tech Leaders Look To IoT, AI & Robotics To Fuel Growth Through 2021

  • 30% of tech leaders globally predict blockchain will disrupt their businesses by 2021.
  • IoT, Artificial Intelligence (AI) and Robotics have the greatest potential to digitally transform businesses, making them more customer-centered and efficient.
  • 26% of global tech leaders say e-Commerce apps and platforms will be the most disruptive new business model in their countries by 2021.
  • IDC predicts worldwide IoT spending will reach $1.1T by 2021.

These and many other insights are from KPMG’s recent research study Tech Disruptors Outpace The Competition. The study can be downloaded here (PDF, 42 pp., no opt-in.).  The methodology is based on interviews with 750 global technology industry leaders, 85% of whom are C-level executives. For additional details on the methodology, please see pages 32 and 33 of the study. The study found that the three main benefits of adopting IoT, AI, and robotics include improved management of personal information, increased personal productivity, and improved customer experience through personalized real-time information. Key insights gained from the study include the following:

  • IoT, Artificial Intelligence (AI) and Robotics have the greatest potential to digitally transform businesses, making them more customer-centered and efficient. Tech leaders also see these three core technologies enabling the next indispensable consumer technology and driving the greatest benefit to life, society, and the environment. KPMG’s research team found that tech companies are integrating these three technologies to create growth platforms for new business ventures while digitally transforming existing business processes. Tech leaders in the U.K. (21%), Japan (20%) and the U.S. (16%) lead all other nations in their plans for IoT digitally transforming their businesses by 2021. Please click on the graphic below to expand for easier reading.

  • 30% of tech leaders globally predict blockchain will disrupt their businesses by 2021. 50% of Japanese tech leaders predict that blockchain will digitally transform their industries and companies by 2021, leading all nations included in the survey.  IoT processes and the rich, real-time data stream sensors and systems are capable of delivering is predicted by tech leaders to be the primary catalyst that will enable blockchain to digitally transform their businesses. 27% of tech leaders globally expect IoT data and applications combined with blockchain to redefine their companies, supply chains and industries. Identity authentication (24%), automated trading (22%) and contracts (14%) are the 2nd through fourth-most disruptive aspects of blockchain by 2021 according to tech leaders. Please click on the graphic below to expand for easier reading.

  • 26% of global tech leaders say e-Commerce apps and platforms will be the most disruptive new business model in their countries by 2021. 19% see social media platforms creating the majority of new business models, followed autonomous vehicle platforms (14%) and entertainment platforms (11%).  KPMG’s analysis includes a ranking of top business models by country, with e-Commerce dominating four of the five regions included in the survey.

  • 50% of tech leaders expect media, transportation, healthcare, and transportation to experience the greatest digital transformation in the next three years.  Respondents most mentioned Amazon, Netflix, Alibaba, Uber, Google, and Facebook as examples of companies who will digitally transform their industries by 2021.  The following table provides insights into which industries by country will see the greatest digital transformations in the next three years. Entertainment platforms are predicted by tech leaders to have the greatest potential to digitally transform the media industry in the U.S. by 2021.

  • Tech leaders predict IoT’s greatest potential for adoption by 2021 is in consumer products, education, services, industrial manufacturing, and telecom. AI’s greatest potential to digitally transform business models is in healthcare and industrial manufacturing (both 11%), consumer products, financial, and services (10% each).  As would be expected, Robotics’ adoption and contribution to digitally transforming businesses will be most dominant in industrial manufacturing (15%), followed by healthcare (11%) and consumer, financial and services (10%). Please click on the graphic to expand for easier reading.

How To Protect Healthcare IoT Devices In A Zero Trust World

  • Over 100M healthcare IoT devices are installed worldwide today, growing to 161M by 2020, attaining a Compound Annual Growth Rate (CAGR) of 17.2% in just three years according to Statista.
  • Healthcare executives say privacy concerns (59%), legacy system integration (55%) and security concerns (54%) are the top three barriers holding back Internet of Things (IoT) adoption in healthcare organizations today according to the Accenture 2017 Internet of Health Things Survey.
  • The global IoT market is projected to soar from $249B in 2018 to $457B in 2020, attaining a Compound Annual Growth Rate (CAGR) of 22.4% in just three years according to Statista.

Healthcare and medical device manufacturers are in a race to see who can create the smartest and most-connected IoT devices first. Capitalizing on the rich real-time data monitoring streams these devices can provide, many see the opportunity to break free of product sales and move into more lucrative digital service business models. According to Capgemini’s “Digital Engineering, The new growth engine for discrete manufacturers,” the global market for smart, connected products is projected to be worth $519B to $685B by 2020. The study can be downloaded here (PDF, 40 pp., no opt-in). 47% of a typical manufacturer’s product portfolio by 2020 will be comprised of smart, connected products. In the gold rush to new digital services, data security needs to be a primary design goal that protects the patients these machines are designed to serve. The following graphic from the study shows how organizations producing smart, connected products are making use of the data generated today.

Healthcare IoT Device Data Doesn’t Belong For Sale On The Dark Web

Every healthcare IoT device from insulin pumps and diagnostic equipment to Remote Patient Monitoring is a potential attack surface for cyber adversaries to exploit. And the healthcare industry is renowned for having the majority of system breaches initiated by insiders. 58% of healthcare systems breach attempts involve inside actors, which makes this the leading industry for insider threats today according to Verizon’s 2018 Protected Health Information Data Breach Report (PHIDBR).

Many employees working for medical providers are paid modest salaries and often have to regularly work hours of overtime to make ends meet. Stealing and selling medical records is one of the ways those facing financial challenges look to make side money quickly and discreetly. And with a market on the Dark Web willing to pay up to $1,000 or more for the most detailed healthcare data, according to Experian, medical employees have an always-on, 24/7 marketplace to sell stolen data. 18% of healthcare employees are willing to sell confidential data to unauthorized parties for as little as $500 to $1,000, and 24% of employees know of someone who has sold privileged credentials to outsiders, according to a recent Accenture survey. Healthcare IoT devices are a potential treasure trove to inside and outside actors who are after financial gains by hacking the IoT connections to smart, connected devices and the networks they are installed on to exfiltrate valuable medical data.

Healthcare and medical device manufacturers need to start taking action now to secure these devices during the research and development, design and engineering phases of their next generation of IoT products. Specifying and validating that every IoT access point is compatible and can scale to support Zero Trust Security (ZTS) is essential if the network of devices being designed and sold will be secure. ZTS is proving to be very effective at thwarting potential breach attempts across every threat surface an organization has. Its four core pillars include verifying the identity of every user, validating every device, limiting access and privilege, and utilizing machine learning to analyze user behavior and gain greater insights from analytics.

The First Step Is Protect Development Environments With Zero Trust Privilege

Product research & development, design, and engineering systems are all attack surfaces that cyber adversaries are looking to exploit as part of the modern threatscape. Their goals include gaining access to valuable Intellectual Property (IP), patents and designs that can be sold to competitors and on the Dark Web, or damaging and destroying development data to slow down the development of new products. Another tactic lies in planting malware in the firmware of IoT devices to exfiltrate data at scale.

Attack surfaces and the identities that comprise the new security perimeter of their companies aren’t just people; they are workloads, services, machines, and development systems and platforms. Protecting every attack surface with cloud-ready Zero Trust Privilege (ZTP) which secures access to infrastructure, DevOps, cloud, containers, Big Data, and the entire development and production environment is needed.

Zero Trust Privilege can harden healthcare and medical device manufacturers’ internal security, only granting least privilege access based on verifying who is requesting access, the context of the request, and the risk of the access environment. By implementing least privilege access, healthcare and medical device manufacturers would be able to minimize attack surfaces, improve audit and compliance visibility, and reduces risk, complexity, and costs across their development and production operations.

The Best Security Test Of All: An FDA Audit

Regulatory agencies across Asia, Europe, and North America are placing a higher priority than ever before on cybersecurity to the device level. The U.S. Food & Drug Administration’s Cybersecurity Initiative is one of the most comprehensive, providing prescriptive guidance to manufacturers on how to attain higher levels of cybersecurity in their products.

During a recent healthcare device and medical device manufacturer’s conference, a former FDA auditor (and now Vice President of Compliance) gave a fascinating keynote on the FDA’s intent to audit medical device security at the production level. Security had been an afterthought or at best a “trust but verify” approach that relied on trusted versus untrusted machine domains. That will no longer be the case, as the FDA will now complete audits that are comparable to Zero Trust across manufacturing operations and devices.

As Zero Trust Privilege enables greater auditability than has been possible in the past, combined with a “never trust, always verify” approach to system access, healthcare device, and medical products manufacturers should start engineering in Zero Trust into their development cycles now.

Roundup Of Internet Of Things Forecasts And Market Estimates, 2018

 

  • According to IDC, worldwide spending on the IoT is forecast to reach $772.5B in 2018. That represents an increase of 15% over the $674B that was spent on IoT in 2017.
  • The global IoT market will grow from $157B in 2016 to $457B by 2020, attaining a Compound Annual Growth Rate (CAGR) of 28.5%.
  • Discrete Manufacturing, Transportation and Logistics, and Utilities will lead all industries in IoT spending by 2020, averaging $40B each.
  • Bain predicts B2B IoT segments will generate more than $300B annually by 2020, including about $85B in the industrial sector.
  • Internet Of Things Market To Reach $267B By 2020 according to Boston Consulting Group.
  • According to IDC FutureScape: Worldwide IoT 2018 Predictions, By the end of 2020, close to 50% of new IoT applications built by enterprises will leverage an IoT platform that offers outcome-focused functionality based on comprehensive analytics capabilities.

The last twelve months of Internet of Things (IoT) forecasts and market estimates reflect enterprises’ higher expectations for scale, scope and Return on Investment (ROI) from their IoT initiatives. Business benefits and outcomes are what drives the majority of organizations to experiment with IoT and invest in large-scale initiatives. That expectation is driving a new research agenda across the many research firms mentioned in this roundup. The majority of enterprises adopting IoT today are using metrics and key performance indicators (KPIs) that reflect operational improvements, customer experience, logistics, and supply chain gains. Key takeaways from the collection of IoT forecasts and market estimates include the following:

  • The global IoT market will grow from $157B in 2016 to $457B by 2020, attaining a Compound Annual Growth Rate (CAGR) of 28.5%. According to GrowthEnabler & MarketsandMarkets analysis, the global IoT market share will be dominated by three sub-sectors; Smart Cities (26%), Industrial IoT (24%) and Connected Health (20%). Followed by Smart Homes (14%), Connected Cars (7%), Smart Utilities (4%) and Wearables (3%). Source: GrowthEnabler, Market Pulse Report, Internet of Things (IoT), 19 pp., PDF, free, no opt-in.

  • Bain predicts B2B IoT segments will generate more than $300B annually by 2020, including about $85B in the industrial sector. Advisory firm Bain predicts the most competitive areas of IoT will be in the enterprise and industrial segments. Bain predicts consumer applications will generate $150B by 2020, with B2B applications being worth more than $300B. Globally, enthusiasm for the Internet of Things has fueled more than $80B in merger and acquisition (M&A) investments by major vendors and more than $30B in venture capital, according to Bain’s estimates. Source: Bain Insights: Choosing The Right Platform For The Internet Of Things

  • The global IoT market is growing at a 23% CAGR of 23% between 2014-2019, enabling smart solutions in major industries including agriculture, automotive and infrastructure. ― Key challenges to growth are the security and scalability of all-new connected devices and the adherence to open standards to facilitate large-scale monitoring of different systems. Source: Export opportunities of the Dutch ICT sector to Germany (25-04-17), PDF, 95 pp., no opt-in

  • According to  Variant Market Research, the Global Internet of Things (IoT) market is estimated to reach $1,599T by 2024, from $346.1B in 2016, attaining a CAGR of 21.1% from 2016 to 2024. Asia-Pacific is predicted to grow at the fastest CAGR over the forecast period 2016 to 2024. The growth is attributed to increasing adoption of IoT in emerging countries such as India and China, high rate of mobile and internet usage, and development of next-generation technologies. Source: Global Internet of Things (IoT) Market: Rising Adoption of Cloud Platform Noticed by Variant Market Research. 

  • Discrete Manufacturing, Transportation and Logistics, and Utilities will lead all industries in IoT spending by 2020, averaging $40B each. Improving the accuracy, speed, and scale of supply chains is an area many organizations are concentrating on with IoT. IoT has the potential to redefine quality management, compliance, traceability and Manufacturing Intelligence. Business-to-Consumer (B2C) companies are projected to spend $25B on IoT in 2020, up from $5B in 2015. The following graphic compares global spending by vertical between 2015 and 2020. Source: Statista, Spending on the Internet of Things worldwide by vertical in 2015 and 2020 (in billion U.S. dollars).

 

  • By 2020, 50% of IoT spending will be driven by discrete manufacturing, transportation, and logistics, and utilities BCG predicts that IoT will have the most transformative effect on industries that aren’t technology-based today. The most critical success factor all these use cases depend on secure, scalable and reliable end-to-end integration solutions that encompass on-premise, legacy and cloud systems, and platforms.Source: Internet Of Things Market To Reach $267B By 2020.

  • The hottest application areas for IoT in manufacturing include Industrial Asset Management, Inventory and Warehouse Management and Supply Chain Management. In high tech manufacturing, Smart Products, and Industrial Asset Management are the hottest application areas. The following Forrester heat Map for 2017 shows the fastest growing areas of IoT adoption by industry. Source: IoT Opportunities, Trends, and Momentum Robert E Stroud CGEIT CRISC.

  • B2B spending on IoT technologies, apps and solutions will reach €250B ($296.8B) by 2020 according to a recent study by Boston Consulting Group (BCG). IoT Analytics spending is predicted to generate €20B ($23.7B) by 2020. Between 2015 to 2020, BCG predicts revenue from all layers of the IoT technology stack will have attained at least a 20% Compound Annual Growth Rate (CAGR). B2B customers are the most focused on services, IoT analytics, and applications, making these two areas of the technology stack the fastest growing. By 2020, these two layers will have captured 60% of the growth from IoT. Source: Internet Of Things Market To Reach $267B By 2020.

  • Manufacturers most relied on the Industrial Internet of Things (IIoT) in 2017 to help better understand machine health (32%) on the shop floor, leading to more accurate Overall Equipment Effectiveness (OEE) measurements. Changing how plant maintenance personnel will work and interact with all levels of operation (29.5%) and helping to better prevent and predict shutdowns (27.1%) are the top three use cases of IIoT according to Plant Engineering and Statista. 

  • Improving customer experiences (70%) and safety (56%) are the two areas enterprises are using data generated from IoT solutions most often today. Gaining cost efficiencies, improving organizational capabilities, and gaining supply chain visibility (all 53%) is the third most popular uses of data generated from IoT solutions today. 53% of enterprises expect data from IoT solutions to increase revenues in the next year. 53% expect data generated from their IoT solutions will assist in increasing revenues in the next year. 51% expect data from IoT solutions will open up new markets in the next year. 42% of enterprises are spending an average of $3.1M annually on IoT. Source: 70% Of Enterprises Invest In IoT To Improve Customer Experiences.

  • McKinsey Global Institute estimates IoT could have an annual economic impact of $3.9T to $11.1T by 2025. Their forecast scenario includes diverse settings and use cases including factories, cities, retail environments, and the human body. Factories alone could contribute between $1.2T to $3.7T in IoT-driven value. Source: McKinsey & Company, What’s New With The Internet of Things?

  • Business Intelligence Competency Centers (BICC), R&D, Marketing & Sales and Strategic Planning are most likely to see the importance of IoT. Finance is considered among the least likely departments to see the importance of IoT. The study also found that sales analytics apps are increasingly relying on IoT technologies as foundational components of their core application platforms.These and many other insights are from Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study. The study defines IoT as the network of physical objects, or “things,” embedded with electronics, software, sensors, and connectivity to enable objects to collect and exchange data. The study examines key related technologies such as location intelligence, end-user data preparation, cloud computing, advanced and predictive analytics, and big data analytics. Please see page 11 of the study for details regarding the methodology.

  • Manufacturing, Consulting, Business Services and Distribution/Logistics are IoT industry adoption leaders. Conversely, Federal Government, State & Local Government are least likely to prioritize IoT initiatives as very important or critical. IoT early adopters are most often defining goals with clear revenue and competitive advantages to drive initiatives. Manufacturing, Consulting, Business Services and Distribution/Logistics are challenging, competitive industries where revenue growth is often tough to achieve. IoT initiatives that deliver revenue and competitive strength quickly are the most likely to get funding and support. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • IoT advocates or early adopters say location intelligence, streaming data analysis, and cognitive BI to deliver the greatest business benefit. Conversely, IoT early adopters aren’t expecting to see as significant of benefits from data warehousing as they are from other technologies. Consistent with previous studies, both the broader respondent base and IoT early adopters place a high priority on reporting and dashboards. IoT early adopters also see the greater importance of visualization and end-user self-service. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • Business Intelligence Competency Centers (BICC), Manufacturing and Supply Chain are among the most powerful catalysts of BI and IoT adoption in the enterprise. The greater the level of BI adoption across the 12 functional drivers of BI adoption defined in the graphic below, the greater the potential for IoT to deliver differentiated value based on unique needs by area. Marketing, Sales and Strategic Planning are also strong driver areas among IoT advocates or early adopters. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • IoT early adopters are relying on growing revenue and increasing competitive advantage as the two main goals to drive IoT initiatives’ success. The most successful IoT advocates or early adopters evangelize the many benefits of IoT initiatives from a revenue growth position first. IoT early adopters are more likely to see and promote the value of better decision-making, improved operational efficiencies, increased competitive advantage, growth in revenues, and enhanced customer service when BI adoption excels, setting the foundation for IoT initiatives to succeed. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • The most popular feature requirements for advanced and predictive analytics applications include regression models, textbook statistical functions, and hierarchical clustering. More than 90% of respondents replied that these three leading features are “somewhat important” to their daily use of analytics. Geospatial analysis (highly associated with mapping, populations, demographics, and other Web-generated data), recommendation engines, Bayesian methods, and automatic feature selection is the next most required series of features. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

  • 74% of IoT advocates or early adopters say location intelligence is critical or very important. Conversely, only 26% of the overall sample ranks location intelligence at the same level of importance. One of the most promising use cases for IoT-based location intelligence is its potential to streamline traceability and supply chain compliance workflows in highly regulated manufacturing industries. In 2018, expect to see ERP and Supply Chain Management (SCM) software vendors launch new applications that capitalize on IoT location intelligence to streamline traceability and supply chain compliance on a global scale. Source: Dresner Advisory Services’ 2017 Edition IoT Intelligence Wisdom of Crowds Series study.

Sources:

10 Predictions For The Internet Of Things (IoT) In 2018

2017 Internet Of Things (IoT) Intelligence Update

Bain Insights, Three Ways Telcos Can Win On The Internet Of Things [Infographic]

Bain Insights: Choosing The Right Platform For The Internet Of Things

Big Data & Analytics Is The Most Wanted Expertise By 75% Of IoT Providers

Cambridge Consultants, Review of latest developments in the Internet of Things, 7 March 2017, 143 pp., free, no opt-in.

Cognizant Trend Study: Digital Industrial Transformation with the Internet of Things: How can European companies benefit from IoT?

Ernst & Young,  Internet of Things Human-machine interactions that unlock possibilities –  Media & Entertainment. 24 pp., PDF, no opt-in.

GrowthEnabler, Market Pulse Report, Internet of Things (IoT), 19 pp., PDF, free, no opt-in

IDC, Worldwide Spending on the Internet of Things Forecast to Reach Nearly $1.4 Trillion in 2021, According to New IDC Spending Guide

IHS Markit IoT Trend Watch 2017, pdf, 26 pp., free, no opt-in

Internet Of Things Market To Reach $267B By 2020

Internet Of Things Will Revolutionize Retail

PwC, Leveraging the Upcoming Disruptions from AI and IoT, 20 pp., PDF, free, no opt-in

McKinsey & Company, Beyond The Supercycle: How Technology Is Reshaping Resources

McKinsey & Company,  Digital machinery: How companies can win the changing manufacturing game

McKinsey & Company, Taking the pulse of enterprise IoT

McKinsey & Company, What’s New With The Internet of Things?

IoT: Landscape and Nasscom Initiatives, May 2017. 36 pp., PDF, free, no opt-in

Stanford University Course EE392B, Industrial IoT: Applications Overview April 4, 2017, Dimitry Gorinevsky

Verizon, State of the Market: Internet of Things 2017 Making way for the enterprise

What Makes An Internet Of Things (IoT) Platform Enterprise-Ready?

Woodside Capital Partners, The Industrial Internet of Things: Making Factories “Smart” For The Next Industrial Revolution, PDF, 126 pp., free, no opt-in

THE INTERNET OF THINGS 2017 REPORT: How the IoT is improving lives to transform the world

The IoT Platforms Report: How software is helping the Internet of Things evolve

 

 

 

 

73% of Executives Are Researching & Launching IoT Projects In 2017

  • Manufacturing-based IoT connections grew 84% between 2016 and 2017, followed by energy & utilities (41%).
  • 73% of executives are either researching or currently launching IoT projects.
  • The IoT platform market is expected to grow 35% per year to $1.16B by 2020.
  • B2B uses can generate nearly 70% of the potential value enabled by IoT.

These and many other fascinating findings are from Verizon’s State of the Market: Internet of Things 2017, Making way for the enterprise (16 pp., PDF, free, opt-in). The Verizon study found that the Internet of Things (IoT) gained significant momentum in 2016, with 2017 IoT investments accelerating. The majority of investments today are in IoT projects that are still in the concept or pilot phase, concentrating on tracking data and sending alerts. While easier to initiate and manage, the majority of pilots aren’t providing the depth of analytics data and insights IoT has the potential to deliver.

Key takeaways from the study include the following:

  • Manufacturing-based IoT connections grew 84% between 2016 and 2017, followed by energy & utilities (41%). Transportation and distribution (40%), smart cities and communities (19%) and healthcare and pharma (11%) are the remaining three industries tracked in the study who had positive growth in the number of IoT connections. The following graphic compares year-over-year growth by industry for the 2016 to 2017 timeframe.

  • Manufacturing is predicted to lead IoT spending in 2017 with $183B invested this year. Verizon’s study predicts that transportation and utilities will have the second and third-largest capital expenses in IoT this year. Insurance, consumer and cross-industry IoT investments including connected vehicles and smart buildings will see the fastest overall growth in 2017.

  • The IoT platform market is expected to grow 35% per year to $1.16B by 2020. From well-established enterprise service providers to startups, the platform market is becoming one of the most competitive within the global IoT ecosystem. The design objective of all IoT platforms is to provide a single environment for enabling API, Web Services and custom integrations that securely support enterprise-wide applications. Please see the post What Makes An Internet Of Things (IoT) Platform Enterprise-Ready? for an overview of the Boston Consulting Group’s recent IoT study, Who Will Win The IoT Platform Wars?
  • Improving the customer experience and excel at customer service by gaining greater insights using IoT leaders enterprises’ investment priorities. 33% of enterprises interviewed prioritize using IoT technologies and the insights it’s capable of providing to excel at customer service. 26% intend to use IoT technologies to improve asset management and increase Return on Assets (ROA) and Return on Invested Capital (ROIC). Consistent with how dominant manufacturing’s investment plans are for IoT this year, production and delivery capabilities are the top deployment priority for 25% of all businesses interviewed.
  • IoT has the potential to revolutionize pharmaceutical supply chains by drastically reducing drug counterfeiting globally. It’s estimated that counterfeit drugs cost the industry between $75B to $200B annually. The human costs of treating those who have been sold counterfeit drugs back to health are incalculable. IoT platforms and systems have the potential to drastically reduce the costs of counterfeiting, both on a personal impact and market standpoint. Drug manufacturers operating in the United States have until November 2017 to mark packages with a product identifier, serial number, lot number and expiration date, plus electronically store and transfer all transaction histories, including shipment information, across their distribution supply chains. Pharmaceutical manufacturers have a high level of urgency to make this happen and stay in compliance with the US Drug Supply Chain Security Act. IoT solutions are flourishing in this industry as a result.

73% Are Using Internet Of Things Data To Improve Their Business

afafdea

  • According to the Cisco Visual Networking Index, M2M connections will represent 46% of connected devices by 2020.
  • 95% of execs surveyed plan to launch an IoT business within three years.

These and many other insights are from the recently published Cisco Internet of Things (IoT) study, The Journey to IoT Value: Challenges, Breakthroughs, and Best Practices published on SlideShare last month. The study is based on a survey of 1,845 IT and business decision-makers in the United States, UK, and India. Industries included in the analysis include manufacturing, local government, retail/hospitality/sports, energy (utilities/oil & gas/mining), transportation, and health care. All respondents worked for organizations that are implementing or have completed IoT initiatives. 56% of all respondents are from enterprises.

Key takeaways from the study include the following:

  • 73% Are Using Internet Of Things Data To Improve Their Business. The data and insights gained from IoT are most often used for improving product quality or performance (47%), improving decision-making (46%) and lowering operational costs (45%). Improving or creating new customer relationships (44%) and reducing maintenance or downtime (42%) are also strategic areas where IoT is making a contribution today according to the Cisco study.

gghhiui8

  • IT executives often see IoT initiatives as more successful (35%) than their line-of-business counterparts (15%). With IT concentrating on technologies and line-of-business users focused on strategy and business cases, the potential exists for differences of opinion regarding IoT initiatives’ value. The following graphic provides an overview of how stark these differences are.

asasddef

  • Engaging with the IoT partner ecosystem in every phase of a project or initiative improves the probability of success. The most valuable phases to engage with ecosystem partners include strategic planning (60%), implementation and deployment (58%) and technical consulting or support (58%). The following graphic provides an overview of most and less successful organizations by their level of involvement in the IoT partner ecosystem.

dfdsfdsfds

  • Only 26% of all companies are successful with their IoT initiatives. The three best practices that lead to a successful IoT implementations include collaboration between IT and business, the availability of internal and external partnerships to gain IoT expertise; and a strong technology-focused culture.
  • 60% of companies believe IoT projects look good on paper but prove more complex that expected. This finding underscores how critical it is for IT and line-of-business executives to have the same goals and objectives going into an IoT project. Being selective about which integration, technology, and professional services partners are chosen needs to be a shared priority between both IT and line-of-business executives.

Internet Of Things Will Replace Mobile Phones As Most Connected Device In 2018

  • abstract, background, banner, telecoms, communication, innovation, concept, design, icon, internet of things, internet, computer, innovate, innovative, ball, circle, sphere, circular, social, data, access, wireless, connection, pattern, global, world map, networking, hexagon, circuit, electric, electronics, microchip, power, gradient, blue, vector, illustration, logo,Internet of Things (IoT) sensors and devices are expected to exceed mobile phones as the largest category of connected devices in 2018, growing at a 23% compound annual growth rate (CAGR) from 2015 to 2021.
  • By 2021 there will be 9B mobile subscriptions, 7.7B mobile broadband subscriptions, and 6.3B smartphone subscriptions.
  • Worldwide smartphone subscriptions will grow at a 10.6% CAGR from 2015 to 2012 with Asia/Pacific (APAC) gaining 1.7B new subscribers alone.

These and other insights are from the 2016 Ericcson Mobility Report (PDF, no opt-in). Ericcson has provided a summary of the findings and a series of interactive graphics here. Ericcson created the subscription and traffic forecast baseline this analysis is based on using historical data from a variety of internal and external sources. Ericcson also validated trending analysis through the use of their planning models. Future development is estimated based on macroeconomic trends, user trends (researched by Ericsson ConsumerLab), market maturity, technology development expectations and documents such as industry analyst reports, on a national or regional level, together with internal assumptions and analysis.In addition, Ericsson regularly performs traffic measurements in over 100 live networks in all major regions of the world. For additional details on the methodology, please see page 30 of the study.

Key takeaways from the 2016 Ericcson Mobility Report include the following:

  • Internet of Things (IoT) sensors and devices are expected to exceed mobile phones as the largest category of connected devices in 2018, growing at a 23% compound annual growth rate (CAGR) from 2015 to 2021. Ericcson predicts there will be a total of approximately 28B connected devices worldwide by 2021, with nearly 16B related to IoT. The following graphic compares cellular IoT, non-cellular IoT, PC/laptop/tablet, mobile phones, and fixed phones connected devices growth from 2015 to 2021.

Internet of Things Forecast

  • 400 million IoT devices with cellular subscriptions were active at the end of 2015, and Cellular IoT is expected to have the highest growth among the different categories of connected devices, reaching 1.5B connections in 2021. Ericcson cites the growth factors of 3GPP standardization of cellular IoT technologies and cellular connections benefitting from enhancements in provisioning, device management, service enablement and security. The forecast for IoT connected devices: cellular and non-cellular (billions) is shown

IoT Connected Devices

  • Global mobile broadband subscriptions will reach 7.7B by 2021, accounting for 85% of all subscriptions. Ericcson is predicting there will be 9B mobile subscriptions, 7.7B mobile broadband subscriptions, and 6.3B smartphone subscriptions by 2021 as well. The following graphic compares mobile subscriptions, mobile broadband, mobile subscribers, fixed broadband subscriptions, and mobile CPs, tablets and mobile routers’ subscription growth.

mobile subscription growth

  • Worldwide smartphone subscriptions will grow at a 10.6% compound annual growth rate (CAGR) from 2015 to 2012. Ericcson predicts that the Asia/Pacific (APAC) region will gain 1.7B new subscribers. The Middle East and Africa will have smartphone subscription rates will increase more than 200% between 2015–2021. The following graphic compares growth by global region.

smartphone subscriptions

  • Mobile subscriptions are growing around 3% year-over-year globally and reached 7.4B in Q1 2016. India is the fastest growing market regarding net additions during the quarter (+21 million), followed by Myanmar (+5 million), Indonesia, (+5 million), the US (+3 million) and Pakistan (+3 million). The following graphic compares mobile subscription growth by global region for Q1, 2016.

Mobile subscriptions Q1

  • 90% of subscriptions in Western Europe and 95% in North America will be for LTE/5G by 2021. The Middle East and Africa will see a dramatic shift from 2G to a market where almost 80% of subscriptions will be for 3G/4G. The following graphic compares mobile subscriptions by region and technology.

Mobile technology by region

  • Mobile video traffic is forecast to grow by around 55% annually through 2021, accounting for nearly 67% of all mobile data traffic. Social networking traffic is predicted to attain a 41% CAGR from 2015 to 2021. The following graphic compared the growth of mobile traffic by application category and projected mobile traffic by application category per month.

mobile video traffic

  • Ericcson also provided mobile subscription, traffic per device, mobile traffic growth forecast, and monthly data traffic per smartphone. The summary table is shown below:

summary table

10 Ways Machine Learning Is Revolutionizing Manufacturing

machine learningBottom line: Every manufacturer has the potential to integrate machine learning into their operations and become more competitive by gaining predictive insights into production.

Machine learning’s core technologies align well with the complex problems manufacturers face daily. From striving to keep supply chains operating efficiently to producing customized, built- to-order products on time, machine learning algorithms have the potential to bring greater predictive accuracy to every phase of production. Many of the algorithms being developed are iterative, designed to learn continually and seek optimized outcomes. These algorithms iterate in milliseconds, enabling manufacturers to seek optimized outcomes in minutes versus months.

The ten ways machine learning is revolutionizing manufacturing include the following:

  • Increasing production capacity up to 20% while lowering material consumption rates by 4%. Smart manufacturing systems designed to capitalize on predictive data analytics and machine learning have the potential to improve yield rates at the machine, production cell, and plant levels. The following graphic from General Electric and cited in a National Institute of Standards (NIST) provides a summary of benefits that are being gained using predictive analytics and machine learning in manufacturing today.

typical production improvemensSource: Focus Group: Big Data Analytics for Smart Manufacturing Systems

  • Providing more relevant data so finance, operations, and supply chain teams can better manage factory and demand-side constraints. In many manufacturing companies, IT systems aren’t integrated, which makes it difficult for cross-functional teams to accomplish shared goals. Machine learning has the potential to bring an entirely new level of insight and intelligence into these teams, making their goals of optimizing production workflows, inventory, Work In Process (WIP), and value chain decisions possible.

factory and demand analytics

Source:  GE Global Research Stifel 2015 Industrials Conference

  • Improving preventative maintenance and Maintenance, Repair and Overhaul (MRO) performance with greater predictive accuracy to the component and part-level. Integrating machine learning databases, apps, and algorithms into cloud platforms are becoming pervasive, as evidenced by announcements from Amazon, Google, and Microsoft. The following graphic illustrates how machine learning is integrated into the Azure platform. Microsoft is enabling Krones to attain their Industrie 4.0 objectives by automating aspects of their manufacturing operations on Microsoft Azure.

Azure IOT Services

Source: Enabling Manufacturing Transformation in a Connected World John Shewchuk Technical Fellow DX, Microsoft

  • Enabling condition monitoring processes that provide manufacturers with the scale to manage Overall Equipment Effectiveness (OEE) at the plant level increasing OEE performance from 65% to 85%. An automotive OEM partnered with Tata Consultancy Services to improve their production processes that had seen Overall Equipment Effectiveness (OEE) of the press line reach a low of 65 percent, with the breakdown time ranging from 17-20 percent.  By integrating sensor data on 15 operating parameters (such as oil pressure, oil temperature, oil viscosity, oil leakage, and air pressure) collected from the equipment every 15 seconds for 12 months. The components of the solution are shown

OEE Graphic

Source: Using Big Data for Machine Learning Analytics in Manufacturing

  • Machine learning is revolutionizing relationship intelligence and Salesforce is quickly emerging as the leader. The series of acquisitions Salesforce is making positions them to be the global leader in machine learning and artificial intelligence (AI). The following table from the Cowen and Company research note, Salesforce: Initiating At Outperform; Growth Engine Is Well Greased published June 23, 2016, summarizes Salesforce’s series of machine learning and AI acquisitions, followed by an analysis of new product releases and estimated revenue contributions. Salesforce’s recent acquisition of e-commerce provider Demandware for $2.8B is analyzed by Alex Konrad is his recent post,     Salesforce Will Acquire Demandware For $2.8 Billion In Move Into Digital Commerce. Cowen & Company predicts Commerce Cloud will contribute $325M in revenue by FY18, with Demandware sales being a significant contributor.

Salesforce AI Acquisitions

Salesforce revenue sources

  • Revolutionizing product and service quality with machine learning algorithms that determine which factors most and least impact quality company-wide. Manufacturers often are challenged with making product and service quality to the workflow level a core part of their companies. Often quality is isolated. Machine learning is revolutionizing product and service quality by determining which internal processes, workflows, and factors contribute most and least to quality objectives being met. Using machine learning manufacturers will be able to attain much greater manufacturing intelligence by predicting how their quality and sourcing decisions contribute to greater Six Sigma performance within the Define, Measure, Analyze, Improve, and Control (DMAIC) framework.
  • Increasing production yields by the optimizing of team, machine, supplier and customer requirements are already happening with machine learning. Machine learning is making a difference on the shop floor daily in aerospace & defense, discrete, industrial and high-tech manufacturers today. Manufacturers are turning to more complex, customized products to use more of their production capacity, and machine learning help to optimize the best possible selection of machines, trained staffs, and suppliers.
  • The vision of Manufacturing-as-a-Service will become a reality thanks to machine learning enabling subscription models for production services. Manufacturers whose production processes are designed to support rapid, highly customized production runs are well positioning to launch new businesses that provide a subscription rate for services and scale globally. Consumer Packaged Goods (CPG), electronics providers and retailers whose manufacturing costs have skyrocketed will have the potential to subscribe to a manufacturing service and invest more in branding, marketing, and selling.
  • Machine learning is ideally suited for optimizing supply chains and creating greater economies of scale.  For many complex manufacturers, over 70% of their products are sourced from suppliers that are making trade-offs of which buyer they will fulfill orders for first. Using machine learning, buyers and suppliers could collaborate more effectively and reduce stock-outs, improve forecast accuracy and met or beat more customer delivery dates.
  • Knowing the right price to charge a given customer at the right time to get the most margin and closed sale will be commonplace with machine learning.   Machine learning is extending what enterprise-level price optimization apps provide today.  One of the most significant differences is going to be just how optimizing pricing along with suggested strategies to close deals accelerate sales cycles.

Additional reading:

Cisco Blog: Deus Ex Machina: Machine Learning Acts to Create New Business Outcomes

Enabling Manufacturing Transformation in a Connected World John Shewchuk Technical Fellow DX, Microsoft 

Focus Group: Big Data Analytics for Smart Manufacturing Systems

GE Predix: The Industrial Internet Platform

IDC Manufacturing Insights reprint courtesy of Cisco: Designing and Implementing the Factory of the Future at Mahindra Vehicle Manufacturers

Machine Learning: What It Is And Why It Matters

McKinsey & Company, An Executive’s Guide to Machine Learning

MIT Sloan Management Review, Sales Gets a Machine-Learning Makeover

Stanford University CS 229 Machine Learning Course Materials
The Economist Feature On Machine Learning

UC Berkeley CS 194-10, Fall 2011: Introduction to Machine Learning
Lecture slides, notes

University of Washington CSE 446 – Machine Learning – Winter 2014

Sources:

Lee, J. H., & Ha, S. H. (2009). Recognizing yield patterns through hybrid applications of machine learning techniques. Information Sciences, 179(6), 844-850.

Mackenzie, A. (2015). The production of prediction: What does machine learning want?. European Journal of Cultural Studies, 18(4-5), 429-445.

Pham, D. T., & Afify, A. A. (2005, July). Applications of machine learning in manufacturing. In Intelligent Production Machines and Systems, 1st I* PROMS Virtual International Conference (pp. 225-230).

Priore, P., de la Fuente, D., Puente, J., & Parreño, J. (2006). A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems. Engineering Applications of Artificial Intelligence, 19(3), 247-255.

%d bloggers like this: