Skip to content

Posts tagged ‘Eightfold’

Remote Recruiting In A Post COVID-19 World

Remote Recruiting In A Post COVID-19 World

Bottom Line: Virtual career fairs and events, fully-remote recruiting, more personalized career paths, and greater insights into candidate experiences are quickly becoming the new normal in a post-COVID-19 world.

The COVID-19 pandemic is quickly changing how every organization is attracting, recruiting, and retaining employees on their virtual teams, making remote work the new normal. Recruiting systems, Applicant Tracking Systems (ATS), and talent management systems were designed for one-on-one personal interactions, not virtual ones. Legacy Human Resource Management (HRM) systems are already showing signs of not being able to scale and meet the challenges of the brave, new post-COVID-19 world. The majority of legacy systems are built for transaction scale and can’t see candidate potential. Closing the gaps between legacy talent management systems and new virtual event recruiting and AI-based talent management platforms are changing that by putting candidate potential at the center of their architectures.

Closing The Virtual Event Recruiting Gap Needs To Happen First

Many organizations during this time of year prioritize recruiting the best and brightest college seniors they can attract during in-person interviews on campus. That’s no longer an option today. College recruiters are resorting to individual Skype or Zoom sessions with candidates while attempting to keep track of interviews the best they can with Excel, Google Sheets, and e-mail. Recruiters trying to recruit for mid-level and senior positions are under increasing pressure from hiring managers to arrange interviews with the highest quality candidates possible.

Seeing an opportunity to help organizations find, engage, and recruit using online events, Eightfold.ai has created and launched Virtual Event Recruiting. Eightfold.ai is best-known for its Talent Intelligence Platform™, the first AI-powered solution and most effective way for companies to identify promising candidates, reach diversity hiring goals, retain top performers, and engage talent. Eightfold.ai’s recent webinar How To Hold Virtual Recruiting Events is worth checking out if you’re interested in how Virtual Event Recruiting is evolving..

What Does Success Look Like In Virtual Event Recruiting?

The table stakes for any Virtual Event Recruiting solution need include support for students just starting their careers, veterans, return-to-work mothers, and experienced professionals. For a solution to be effective, it also needs to enable companies and job seekers to connect, giving companies greater scale than is possible for physical recruiting events. Ideally, any virtual event recruiting system needs to provide the following:

  • The ability to upload resume books and use AI to find the highest quality matches for open positions in real-time. Machine learning algorithms excel at pattern matching and can save recruiters thousands of hours of drudgery by immediately seeing the highest quality matches for open positions.
  • Provide a planning center that also serves a company’s specific talent community and provide tools to grow it by tailoring events to their specific interests while seeking the best-qualified candidates for open positions. Creating, launching, and tracking recruiting campaigns from the same dashboard that tracks invitations, registrations, and open positions being filled gives recruiters the end-to-end visibility they need to succeed with a virtual event. It’s important to have Assessments included in every virtual event to measure candidates’ experiences and see what’s going well and which areas need to improve. The following is an example of what Eightfold’s planning center looks like:

Remote Recruiting In a Post COVID-19 World

  • Rely on AI to match high-potential candidates with the best possible virtual events to increase opt-in and participation rates. For a virtual event recruiting solution to be effective, high-potential candidates need to be matched with positions they will most excel in. A first step to making this happen is using AI to understand every candidate’s strengths and inviting them to the virtual events that will help them the most in choosing the best position given their potential.

Remote Recruiting In a Post COVID-19 World

  • Guide candidates to the positions that best match their existing capabilities and future potential. Instead of relying on keyword matching from resumes alone, virtual event recruiting applications need to suggest those positions high-potential candidates have the greatest potential to excel at. Using AI to combine all available data on a candidate, so their existing capabilities and future potential are taken into account is key to making more successful hires. Integrating job recommendations with virtual event recruiting is a must-have for any organization looking to add staff in 2020 and beyond.

Remote Recruiting In a Post COVID-19 World

  • After the virtual event, all potential candidates for an open position need to be stacked-ranked so recruiters can prioritize who they contact. By providing personalization at scale to every candidate by providing them recommendations for the positions they are the strongest match for, recruiters will find following-up is easier to accomplish than cold-calling a candidate found on LinkedIn, for example. Stack ranking needs to include members of the existing talent community and organization is cultivating as well. An excellent example of how this could work is shown below:

Remote Recruiting In a Post COVID-19 World

Conclusion

University campuses need to consider partnering with Eightfold.ai to make it easier for their graduating students to find best available careers, perhaps across a much broader range of companies than ever visited any individual campus. And there is no reason this paradigm can’t be applied to other job fairs and recruiting events like Grace Hopper.

Improving event virtual recruiting needs to be the priority recruiters and HR professionals take action on first to stay competitive from a talent management standpoint. Organizations that will win the war for talent in this new remote, distributed workforce era are already looking at how to excel at virtual recruiting. Having a talent intelligence platform that can provide end-to-end visibility and personalization at scale is the future of talent management.

 

How To Reduce The Unemployment Gap With AI

How To Reduce The Unemployment Gap With AI

It’s time for AI startups to step up and use their formidable technology expertise in AI to help get more Americans back to work now.

Bottom Line: A.I.’s ability to predict and recommend job matches will help get more Americans back to work, helping to reduce the 22 million unemployed today.

One in ten Americans is out of work today based latest U.S. Department of Labor data. They’re primarily from the travel and hospitality, food services, and retail trade and manufacturing industries, with many other affected sectors. McKinsey & Company’s recent article, A new AI-powered network, is helping workers displaced by the coronavirus crisis provides context around the scope of challenges involved in closing the unemployment gap. McKinsey, Eightfold A.I., and the FMI – The Food Industry Association combined efforts to create the Talent Exchange, powered by Eightfold.ai in a matter of weeks. McKinsey insights across a broad base of industries to help Eightfold and FMI create the Talent Exchange in record time. “In talking with clients across the U.S., it became very clear that there is a huge labor mismatch, and individuals are being affected very differently—from retailers furloughing tens of thousands of workers to other organizations needing to hire more than 100,000 workers quickly. We’re excited to help bring a scalable offering to the market,” said McKinsey partner Andrew Davis. McKinsey and FMI collaborating with Eightfold speak volumes to how Americans are coming together to combat the COVID-19 fallout as a team.

And with the food & agriculture, transportation, and logistics industries considered essential, critical infrastructure by Cybersecurity and Infrastructure Security Agency (CISA), demand for workers is more urgent than ever. Eightfold’s Talent Exchange launched last weekend and already has more than 600,000 jobs uploaded that employers need to fill and is available in 15 languages. Eightfold is making the Talent Exchange available free of charge through the COVID-19 epidemic. The Talent Exchange is also being extended to other industries and eco-systems, illustrating how the Eightfold A.I. platform can provide transferability of skills across roles and industries.

Getting Americans Back To Work Using A.I.

Earlier this week Eightfold, FMI – The Food Industry Association and Josh Bersin, the noted global research analyst, public speaker, and writer on many aspects of human resources and talent management, hosted the webinar, COVID-19: Helping the food industry on the front lines with A.I. It’s available to watch here and includes a walk-through of the Eightfold Talent Exchange. The following graphic explains how the Talent Exchange addresses the needs of downsizing companies, impacted workers and hiring companies:

How To Reduce The Unemployment Gap With AI

Eightfold’s Talent Exchange Is A Model For How To Use A.I. For Good

Eightfold’s Talent Exchange uses A.I. algorithms to match candidates with available roles, based on each individual’s skills and previous experience.

Current employers who have to furlough or lay off employees can invite employees to participate in the program. Eightfold also designed in a useful feature that enables employers to add lists of impacted employees and send them a link to register for the Exchange. Employers can view their entire impacted workforce in a single dashboard and can filter by role, department, or location to see details about the talent needs from hiring companies and how their impacted employees are getting placed in new roles. The following is the Talent Exchange dashboard  for current employers showing progress in placing employees with furlough and outplacement partners, including the number of offers accepted by each:

How To Reduce The Unemployment Gap With AI

Employees impacted by a furlough or lay-off can create and update profiles free on the Talent Exchange, defining their job preferences, skills, and experience. That’s invaluable data for hiring companies relying on the platform to make offers and fill positions quickly.  How current employers handle furloughs and lay-offs today will be their identity for years to come, a point John Bersin made during the webinar saying “employers who thrive in the future are going to build long-term relationships with employees today.” Employees receive the following when their current employer adds their name to the Eightfold Talent Exchange. The fictional Company Travel Air is used for this example:

Hiring companies see candidate matches generated by the Exchange, so they can contact these prospects or immediately offer them new jobs. Eightfold’s A.I. engineering teams have automated and personalized this contact as well, expediting the process even further. Hiring companies can add onboarding instructions to allow new hires to start as soon as they are ready and have real-time views of their hiring dashboard shown below:

How To Reduce The Unemployment Gap With AI

Conclusion

Combining A.I.’s innate strengths with H.R. and talent management professionals’ expertise and insights is closing the unemployment gap today. Employers furloughing or laying off employees need to look out for them and get their profile data on the Talent Exchange, helping them find new jobs with hiring companies. As was so well-said by Josh Bersin during the webinar this week, “smart employers should think of their hourly workers as talent, not fungible, replaceable bodies.” For hiring companies in a war for proven employees with talent today, that mindset is more important than ever.

10 Ways AI Is Going To Improve Fintech In 2020

Bottom Line: AI & machine learning will improve Fintech in 2020 by increasing the accuracy and personalization of payment, lending, and insurance services while also helping to discover new borrower pools.

Zest.ai’s 2020 Predictions For AI In Credit And Lending captures the gradual improvements I’ve also been seeing across Fintech, especially at the tech stack level. Fintech startups, enterprise software providers, and the investors backing them believe cloud-based payments, lending, and insurance apps are must-haves to drive future growth. Combined with Internet & public cloud infrastructure and mobile apps, Fintech is evolving into a fourth platform that provides embedded financial services to any business needing to subscribe to them, as Matt Harris of Bain Capital Ventures writes in Fintech: The Fourth Platform – Part Two. Embedded Fintech has the potential to deliver $3.6 trillion in market value, according to Bain’s estimates, surpassing the $3 trillion in value created by cloud and mobile platforms. Accenture’s recent survey of C-suite executives’ adoption and plans found that 84% of all executives believe they won’t achieve their growth objectives unless they scale AI, and 75% believe they risk going out of business in 5 years if they don’t. The need to improve payment, lending and insurance combined with customers’ mercurial preferences for how they use financial services are challenges that AI and machine learning (ML) are solving today.

How AI & Machine Learning Will Improve Fintech In 2020

Fintech’s traditional tech stacks weren’t designed to anticipate and act quickly on real-time market indicators and data; they are optimized for transaction speed and scale. What’s needed is a new tech stack that can flex and adapt to changing market and customer requirements in real-time. AI & machine learning are proving to be very effective at interpreting and recommending actions based on real-time data streams. They’re also improving customer experiences and reducing risk, two additional factors motivating lenders to upgrade their traditional tech stacks with proven new technologies.

The following are ten predictions of how AI will improve FinTech in 2020, thank you Zest.ai for your insights and sharing your team’s expertise on these:

  1. Zest predicts lenders will increase the use of ML as the way to grow into the no-file/thin-file segments, especially rising Gen Zers with little to no credit history. Traditional tech stacks make it difficult to find and grow new borrower pools. Utah-based auto lenderPrestige Financial Services chose to rely on an AI solution instead. The chose Zest AI to find and cultivate a borrower pool of people in the 19-35 age group. Using an AI-based loan approval workflow, Prestige was able to increase loan approval rates by 25%, and for people under 20 by threefold.
  2. Mortgage lenders’ adoption of AI for finding qualified first-time homeowners is going to increase as more realize Gen Z (23 – 36-year-olds) are the most motivated of all to purchase a home. In 2020, long-standing assumptions about first-time homebuyers and their motivations are going to change. A recent story in HousingWire, “This generation is the most willing to do whatever it takes to buy a home,” explains that Gen Z, or those people born between 1996 and 2010, are the most likely to relocate to purchase a new home. A recent TransUnion market analysis found 70% of Gen Z prospective home buyers are willing to relocate to buy their first home, leading all active generations. 65% of Gen Xers, or those born between 1965 to 1980, were the second most likely to move. AI and ML can help lenders more precisely target potential Gen Z first-time homebuyers, measuring the impact of their marketing campaigns on attracting new borrowers. The TransUnion market analysis finds that 58% of respondents are delaying a home purchase due to anticipated high down payments or monthly payments. 51% said the need to obtain a 10% to 20% down payment was stopping them. According to Joe Mellman, TransUnion senior vice president, and mortgage business leader, “Many of our potential first-time homebuyer respondents don’t seem to be aware of the wide variety of financing options available to them.” The TransUnion market analysis found that many of the potential first-time homeowner respondents have never heard of low down-payment options from Fannie Mae, Freddie Mac, or of the Federal Housing Administration.
  3. Zest predicts banks and other financial institutions will strengthen their business cases for AI pilots and production-level deployments by recognizing the operating expense (OPEX) savings of ML. Several recurring costs involved in developing, validating and deploying credit risk models can be reduced or cut by switching to machine learning, according to Zest. Lenders can get the most out of their data acquisition spending by using modern ML tools to assess which data sources yield the most predictive power for a model. Lenders will also switch to ML to simplify their IT and risk operations by consolidating into fewer models that can do the work of what used to be multiple individual linear models for every customer segment.
  4. Compliance cost growth will decline even faster due to ML. Financial institutions that have AI/ML algorithms in production log every change in a model and can produce all the required model risk governance documents in minutes instead of a compliance team manually taking weeks to do it. Automated tools also shrink the time it takes to do fair lending testing by building less discriminatory models on the fly rather than the time-intensive approach of drop-one-variable-and-test. Time is money, especially in lending.
  5. AI and ML will gain critical mass in collections, providing insights into which approach is the most effective for a given customer. Zest has built collections models for a few financial services firms and has found them to be very effective. Collections logic, predicting which customers to wait on when bills are past due, is a strong fit for machine learning. With one bank, Zest found that ML models can, for example, accurately target the borrowers most likely to make a certain minimum payment based on the value of their loan within 60 days of falling behind their due date. In three months, Zest built two models from traditional credit bureaus and the bank’s proprietary collections metrics to predict this repayment propensity of borrowers. One insight into the data was that borrower behavior accounted for just over half of the bank’s ability to collect missed payments, but operations played a significant role.
  6. If there’s a downturn, ML will get blamed (even though it can actually help in a downturn). Pankaj Kulshreshtha, CEO of Scienaptics, originally made this observation at the Money 20/20 Conference held earlier this year. Models built only in good times can see their correlations break when times go bad. Lenders who observe best practices in AI and ML adoption will make sure to stress-test their models, perhaps by including synthetic data to add heterogeneity. Better ML monitoring will be important, too. “ML models and algorithmic monitors can do a better job seeing around corners, spotting rising numbers of inbound outlier applicants that signal more volatile conditions ahead,” says Seth Silverstein, Executive Vice President of Credit Risk Analytics for Zest AI.  An effective ML monitoring tool should excel at spotting outlier applicants and feature drift, ensuring more accurate model outcomes.
  7. 2020 is going to be a break-out year for partnerships and co-opetition as payments, lending and insurance firms vie for a growth position in embedded financial services. Matt Harris of Bain Capital Ventures’ prediction of embedded fintech suggests a proliferation of cloud-based Fintech apps around the core: payments, lending, insurance. That creates an ideal situation for AI-related alliances and partnerships among the incumbent lenders, startups, data aggregators and the CRAs. To Harris, the layers of the stack are centered around connectivity, intelligence, and ubiquity. According to Crunchbase, there have been 51 Fintech acquisitions in 2019 alone. Plaid’s acquisition of Quovo in January for approximately $200 million and Fiserv’s acquisition of First Data reflect how Fintechs are creating their own unique tech stacks already.
  8.  Zest predicts Fintechs will seek out AI and ML modeling expertise more so than build expertise and teams on their own, which will be costlier and take longer. Embedded Fintech’s future adoption rate is predicated on how effective development efforts are today at minimizing incidental bias and providing customers with greater visibility into how and why models provide specific results “Some of these startups are bringing their own data science and ML models. We have to hope these firms own, build, or buy the tools to ensure their models are inclusive, free of incidental bias, and use transparent AI customers can trust. We see explainable AI as being an essential feature or service in that tech stack,” says Zest’s Silverstein.
  9.  Fintechs will rely on AI and ML to help close the talent gap each of them has today while also improving the effectiveness of their talent management strategies. Finding, recruiting, and hiring the best candidates for development, engineering, marketing, sales, and senior management roles is an area Fintechs will increasingly adopt AI and ML for in 2020. Fintech CEOs and CHROs will begin upskilling programs for themselves and their teams to increase AI fluency and skills mastery in 2020. According to a recent Harris Interactive survey completed in collaboration with Eightfold titled Talent Intelligence And Management Report 2019-2020, 73% of U.S. CEOs and CHROs plan to use more AI in the next three years to improve talent management.
  10. Credit unions will adopt ML in 2020 to automate routine tasks and free up human underwriters to focus on providing more personalized services, including improvements in inquiry resolution & dispute and fraud management. Credit unions are built on an annuity-based business model that delivers successively higher profitability the longer a member is retained. Credit unions will capitalize on ML by driving up loan approvals with no added risk and automating more of the loan approval process. By the end of 2020, according to a Fannie Mae survey of mortgage lenders, 71% of credit unions plan to investigate, test, or fully implement AI/ML solutions – up from just 40% in 2018. AI and ML will also be adopted across credit unions to improve inquiry resolution & dispute and fraud management while improving multichannel customer experiences. Providing real-time, relevant responses to customers to expedite inquiries and dispute resolutions using AI and ML is going to become commonplace in 2020. AI and ML are predicted to make a significant contribution to automating anomaly detection and borrower default risk assessment as the graphic below from Fannie Mae’s Mortgage Lender Sentiment Survey® How Will Artificial Intelligence Shape Mortgage Lending? Q3 2018 Topic Analysis illustrates:

 

 

Predicting How AI Will Improve Talent Management In 2020

Predicting How AI Will Improve Talent Management In 2020

47% of U.S.-based enterprises are using AI today for recruitment, leading all countries in the survey. U.S.-based enterprises’’ adoption of AI for recruitment soared in the last year, jumping from 22% in 2018 to 47% this year based on last years’ Harris Interactive Talent Intelligence and Management Report 2018.

  • 73% of U.S. CEOs and CHROs plan to use more AI in the next three years to improve talent management.
  • U.S.-based enterprises’’ adoption of AI for recruitment soared in the last year, jumping from 22% in 2018 to 47% this year.
  • U.S.-based enterprises lead in the use of AI to automate repetitive tasks (44%) and employee retention (42%).

These and many other fascinating insights are from a recent study completed by Harris Interactive in collaboration with Eightfold titled Talent Intelligence And Management Report 2019-2020, which provides insights into how CHROs are adopting AI today and in the future. You can download a copy here. A total of 1,350 CEOs and CHROs from the U.S., France, Germany, and the U.K. responded to the survey. One of the most noteworthy findings is how U.S-based CEOs and CHROs lead the world in prioritizing and taking action on improving their teams and their own AI skills. The more expertise they and their teams have with AI, the more effective they will be achieving operational improvements while taming the bias beast. The following graphic provides insights into how the four nations surveyed vary by their CEOs’ and CHROs’ perception of new technologies having had positive impacts, their plans for using AI in three years, and employee’s concerns about AI:

Predicting How AI Will Improve Talent Management In 2020

Predicting The Future Of AI In Talent Management

Four leading experts who are actively advising clients, implementing, and using AI to solve talent management challenges shared their predictions of how AI will improve talent management in 2020. The panel includes Kelly O. Kay, Partner, Heidrick & Struggles, Jared Lucas, Chief People Officer at MobileIron, Mandy Sebel, Senior Vice President, People at UiPath and David Windley CEO, IQTalent Partners. Mr. Kay leads the Software Practice for Heidrick & Struggles, a leading executive search and consulting firm commented: “As we all know, the talent crisis of 2019 is real and Eightfold’s application of AI on today is the most impactful approach I’ve seen and the outcomes they deliver eliminate unconscious bias, increases transparency and improves matching supply and demand of talent.” The following are their predictions of how AI will improve the following areas of talent management in 2020:

  • “Pertaining to talent attraction & acquisition-as adoption of intelligent automation and AI tools increases hiring managers and recruiters more easily uncover and surface overlooked talent pools,” said Mandy Sebel, Senior Vice President, People at UiPath.
  • “I predict that AI will become a requirement for companies in the screening of candidates due to the pervasive need to find higher-quality candidates at a faster pace,” said Jared Lucas, Chief People Officer at MobileIron.
  • “I believe the use of AI in the talent acquisition space will begin to hit critical mass in 2020. We are still in the early adopter phase, but the use of AI to match potential candidates to job profiles is catching on. Especially the use of AI for rediscovering candidates in ATS systems of larger corporations. Companies like Eightfold, Hiretual, and Atipica are leading the way,” said David Windley CEO, IQTalent Partners.
  • “Fear of job replacement will also subside, and more focus on job/role evolution as teams are experiencing firsthand how respective task elimination allows them to do more meaningful work,” commented Mandy Sebel, Senior Vice President, People at UiPath.
  • AI will provide the insights needed for CHROs to retain and grow their best talent, according to Jared Lucas, Chief People Officer at MobileIron. “I predict that AI will drive better internal mobility and internal candidate identification as companies are better able to mine their internal talent to fill critical roles,” he said.
  • Having gained credibility for executive and senior management recruiting, AI platforms’ use will continue to proliferate in 2020. “Private Equity is beginning to commercialize how AI can help select executives for roles based on competencies and experiences, which is exciting!” said Kelly O. Kay, Partner, Heidrick & Struggles.

What’s Next For You? How AI Is Transforming Talent Management

Bottom Line: Taking on the talent crisis with greater intelligence and insight, delivering a consistently excellent candidate experience, and making diversity and inclusion a part of their DNA differentiates growing businesses who are attracting and retaining employees. The book What’s Next For You? by Ashutosh Garg, CEO and Co-Founder and Kamal Ahluwalia, President of eightfold.ai provide valuable insights and a data-driven roadmap of how AI is helping to solve the talent crisis for any business.

The Talent Crisis Is Real

  • 78% of CEOs and Chief Human Resource Officers (CHROs) say talent programs are important, with 56% say their current programs are ineffective.
  • 83% of employees want a new job yet only 53% want to leave for a new company.
  • 57% of employees say diversity and inclusion initiatives aren’t working, and 40% say their companies lack qualified diverse talent.
  • Nearly 50% of an organizations’ top talent will leave their jobs in the first two years of being hired.
  • 28% of open positions today won’t be filled in the next 12 months.

The above findings are just a sample of the depth of data-driven content and roadmap the book What’s Next For You? delivers. Co-authors Ashutosh Garg’s and Kamal Ahluwalia’s expertise in applying AI and machine learning to talent management problems with a strong data-first mindset is evident throughout the book. What makes the book noteworthy is how the authors write from the heart first with empathy for applicants and hiring managers, supporting key points with data. The empathetic, data-driven tone of the book makes the talent crisis relatable while also illustrating how AI can help any business make better talent management decisions.

“Businesses are having to adapt to technology changes and changes in customer expectations roughly every 10 years – a timeframe that is continuing to shrink. As a result, business leaders need to really focus on rethinking their business strategy and the associated talent strategy, so they have the organizational capability to transform and capitalize on the inevitable technology shifts,” writes John Thompson, Venture Partner, Lightspeed Venture Partners and Chairman of the Board at Microsoft in the forward.

The book cites talent management researchers and experts who say “our current knowledge base has a half-life of about two years, and the speed of technology is outperforming us as humans because of what it can do quickly and effectively“ (p.64). John Thompson’s observations in the forward that the time available for adapting to change is shrinking is a unifying thread that ties this book together. One of the most convincing is the fact that using today’s Applicant Tracking Systems (ATS) and hiring processes prone to biases, there’s a 30% chance a new hire will not make it through their first year. If the new hire is a cloud computing professional, this equates to a median salary of $146,350 and taking best-case 46 days to find their replacement. The cost and time loss of losing just one recruited cloud computing professional can derail a project for months. It will cost at least $219,000 or more to replace just that one engineer. Any manager who has lost a new hire within a year can relate to how real the talent crisis is and how urgent it is to solve it.

The Half-Life Of Skills Is Shrinking Fast

The most compelling chapter of the book illustrates how today’s talent crisis can be solved by taking an AI-enabled approach to every aspect of talent management. Chapter 4, The Half-Life Of Skills Is Shrinking Fast, delves into how AI can find candidates who can unlearn old concepts, and quickly master new ones. The book calls out this attribute of any potential new hire as being essential for them to adapt.  Using higher quality data than is available in traditional ATS systems, the authors illustrate how AI-based systems can be used for evaluating both the potential and experiences of applicants to match them with positions they will excel in. The authors make a convincing argument that AI can increase the probability of new candidate success. They cite a well-known Leadership IQ statistic of 46% of all new employee hires failing to adapt within 18 months, and the Harvard Business Review study finding between 40% to 60% of new upper management hires fail within 18 months. The authors contend that even Leonardo Da Vinci, one of the primary architects of the Renaissance, would have trouble finding work using a traditional resume entered into an ATS system today because his exceptional capabilities and potential would have never been discovered. When our existing process of recruiting is based on practices over 500 years old, as this copy of Leonardo Da Vinci’s resume illustrates, it’s time to put AI to work matching peoples’ potential with unique position requirements.

When Employees Achieve Their Potential, Companies Do Too   

Attracting the highest potential employees possible and retaining them is the cornerstone of any digital business’ growth strategy today and in the future. The book addresses the roadblocks companies face in attaining that goal, with bias being one of the strongest. “For example, McKinsey & Co., a top consulting agency, studied over 1,000 companies across 12 countries and found that firms in the top quartile of gender diversity were a fifth more likely to have above-average profits than those in the bottom quartile,” (p. 105). Further, “diverse executive boards generate better financial returns, and gender-diverse teams are more creative, more productive and more confident.” (p. 105).

In conclusion, consider this book a roadmap of how hiring and talent management can change for the better based on AI. The authors successfully illustrate how combining talent, personalization at scale, and machine learning can help employees achieve their potential, enabling companies to achieve theirs in the process.

10 Ways Machine Learning Is Revolutionizing Sales

  • Sales teams adopting AI are seeing an increase in leads and appointments of more than 50%, cost reductions of 40%–60%, and call time reductions of 60%–70% according to the Harvard Business Review article Why Salespeople Need to Develop Machine Intelligence.
  • 62% of highest performing salespeople predict guided selling adoption will accelerate based on its ability rank potential opportunities by value and suggest next steps according to Salesforces’ latest State of Sales research study.
  • By 2020, 30% of all B2B companies will employ AI to augment at least one of their primary sales processes according to Gartner.
  • High-performing sales teams are 4.1X more likely to use AI and machine learning applications than their peers according to the State of Sales published by Salesforce.
  • Intelligent forecasting, opportunity insights, and lead prioritization are the top three AI and machine learning use cases in sales.

Artificial Intelligence (AI) and machine learning show the potential to reduce the most time-consuming, manual tasks that keep sales teams away from spending more time with customers. Automating account-based marketing support with predictive analytics and supporting account-centered research, forecasting, reporting, and recommending which customers to upsell first are all techniques freeing sales teams from manually intensive tasks.

The Race for Sales-Focused AI & Machine Learning Patents Is On

CRM and Configure, Price & Quote (CPQ) providers continue to develop and fine-tune their digital assistants, which are specifically designed to help the sales team get the most value from AI and machine learning. Salesforces’ Einstein supports voice-activation commands from Amazon Alexa, Apple Siri, and Google. Salesforce and other enterprise software companies continue aggressively invest in Research & Development (R&D). For the nine months ended October 31, 2018, Salesforce spent $1.3B or 14% of total revenues compared to $1.1B or 15% of total revenues, during the same period a year ago, an increase of $211M according to the company’s 10Q filed with the Securities and Exchange Commission.

The race for AI and machine learning patents that streamline selling is getting more competitive every month. Expect to see the race of sales-focused AI and machine learning patents flourish in 2019. The National Bureau of Economic Research published a study last July from the Stanford Institute For Economic Policy Research titled Some Facts On High Tech Patenting. The study finds that patenting in machine learning has seen exponential growth since 2010 and Microsoft had the greatest number of patents in the 2000 to 2015 timeframe. Using patent analytics from PatentSight and ipsearchIAM published an analysis last month showing Microsoft as the global leader in machine learning patents with 2,075.  The study relied on PatentSight’s Patent Asset Index to rank machine learning patent creators and owners, revealing Microsoft and Alphabet are dominating today. Salesforce investing over $1B a year in R&D reflects how competitive the race for patents and intellectual property is.

10 Ways Machine Learning Is Revolutionizing Sales

Fueled by the proliferation of patents and the integration of AI and machine learning code into CRM, CPQ, Customer Service, Predictive Analytics and a wide variety of Sales Enablement applications, use cases are flourishing today. Presented below are the ten ways machine learning is most revolutionizing selling today:

 

  1. AI and machine learning technologies excel at pattern recognition, enabling sales teams to find the highest potential new prospects by matching data profiles with their most valuable customers. Nearly all AI-enabled CRM applications are providing the ability to define a series of attributes, characteristics and their specific values that pinpoint the highest potential prospects. Selecting and prioritizing new prospects using this approach saves sales teams thousands of hours a year.
  2. Lead scoring and nurturing based on AI and machine learning algorithms help guide sales and marketing teams to turn Marketing Qualified Leads (MQL) into Sales Qualified Leads (SQL), strengthening sales pipelines in the process. One of the most important areas of collaboration between sales and marketing is lead nurturing strategies that move prospects through the pipeline. AI and machine learning are enriching the collaboration with insights from third-party data, prospect’s activity at events and on the website, and from previous conversations with salespeople. Lead scoring and nurturing relies heavily on natural language generation (NLG) and natural-language processing (NLP) to help improve each lead’s score.
  3. Combining historical selling, pricing and buying data in a single machine learning model improves the accuracy and scale of sales forecasts. Factoring in differences inherent in every account given their previous history and product and service purchasing cycles is invaluable in accurately predicting their future buying levels. AI and machine learning algorithms integrated into CRM, sales management and sales planning applications can explain variations in forecasts, provided they have the data available. Forecasting demand for new products and services is an area where AI and machine learning are reducing the risk of investing in entirely new selling strategies for new products.
  4. Knowing the propensity of a given customer to churn versus renew is invaluable in improving Customer Lifetime Value. Analyzing a diverse series of factors to see which customers are going to churn or leave versus those that will renew is among the most valuable insights AI and machine learning is delivering today. Being able to complete a Customer Lifetime Value Analysis for every customer a company has provides a prioritized roadmap of where the health of client relationships are excellent versus those that need attention. Many companies are using Customer Lifetime Value Analysis as a proxy for a customer health score that gets reviewed monthly.
  5. Knowing the strategies, techniques and time management approaches the top 10% of salespeople to rely on to excel far beyond quota and scaling those practices across the sales team based on AI-driven insights. All sales managers and leaders think about this often, especially in sales teams where performance levels vary widely. Knowing the capabilities of the highest-achieving salespeople, then selectively recruiting those sales team candidates who have comparable capabilities delivers solid results. Leaders in the field of applying AI to talent management include Eightfold whose approach to talent management is refining recruiting and every phase of managing an employee’s potential. Please see the recent New York Times feature of them here.
  6. Guided Selling is progressing rapidly from a personalization-driven selling strategy to one that capitalized on data-driven insights, further revolutionizing sales. AI- and machine learning-based guided selling is based on prescriptive analytics that provides recommendations to salespeople of which products, services, and bundles to offer at which price. 62% of highest performing salespeople predict guided selling adoption will accelerate based on its ability rank potential opportunities by value and suggest next steps according to Salesforces’ latest State of Sales research study.
  7. Improving the sales team’s productivity by using AI and machine learning to analyze the most effective actions and behaviors that lead to more closed sales. AI and machine learning-based sales contact and customer predictive analytics take into account all sources of contacts with customers and determine which are the most effective. Knowing which actions and behaviors are correlated with the highest close rates, sales managers can use these insights to scale their sales teams to higher performance.
  8. Sales and marketing are better able to define a price optimization strategy using all available data analyzing using AI and machine learning algorithms. Pricing continues to be an area the majority of sales and marketing teams learn to do through trial and error. Being able to analyze pricing data, purchasing history, discounts are taken, promotional programs participated in and many other factors, AI and machine learning can calculate the price elasticity for a given customer, making an optimized price more achievable.
  9. Personalizing sales and marketing content that moves prospects from MQLs to SQLs is continually improving thanks to AI and machine learning. Marketing Automation applications including HubSpot and many others have for years been able to define which content asset needs to be presented to a given prospect at a given time. What’s changed is the interactive, personalized nature of the content itself. Combining analytics, personalization and machine learning, marketing automation applications are now able to tailor content and assets that move opportunities forward.
  10. Solving the many challenges of sales engineering scheduling, sales enablement support and dedicating the greatest amount of time to the most high-value accounts is getting solved with machine learning. CRM applications including Salesforce can define a salesperson’s schedule based on the value of the potential sale combined with the strength of the sales lead, based on its lead score. AI and machine learning optimize a salesperson’s time so they can go from one customer meeting to the next, dedicating their time to the most valuable prospects.

Using Machine Learning To Find Employees Who Can Scale With Your Business

  • Eightfold’s analysis of hiring data has found the half-life of technical, marketable skills is 5 to 7 years, making the ability to unlearn and learn new concepts essential for career survival.
  • Applicant Tracking Systems (ATS) don’t capture applicants’ drive and intensity to unlearn and learn or their innate capabilities for growth.
  • Artificial Intelligence (AI) and machine learning are proving adept at discovering candidates’ innate capabilities to unlearn, learn and reinvent themselves throughout their careers.

Hiring managers in search of qualified job candidates who can scale with and contribute to their growing businesses are facing a crisis today. They’re not finding the right or in many cases, any candidates at all using resumes alone, Applicant Tracking Systems (ATS) or online job recruitment sites designed for employers’ convenience first and candidates last. These outmoded approaches to recruiting aren’t designed to find those candidates with the strongest capabilities. Add to this dynamic the fact that machine learning is making resumes obsolete by enabling employers to find candidates with precisely the right balance of capabilities needed and its unbiased data-driven approach selecting candidates works. Resumes, job recruitment sites and ATS platforms force hiring managers to bet on the probability they make a great hire instead of being completely certain they are by basing their decisions on solid data.

Playing The Probability Hiring Game Versus Making Data-Driven Decisions

Many hiring managers and HR recruiters are playing the probability hiring game. It’s betting that the new hire chosen using imprecise methods will work out. And like any bet, it gets expensive quickly when a wrong choice is made. There’s a 30% chance the new hire will make it through one year, and if they don’t, it will cost at least 1.5 times their salary to replace them. When the median salary for a cloud computing professional is $146,350, and it takes the best case 46 days to find them, the cost and time loss of losing just one recruited cloud computing professional can derail a project for months. It will cost at least $219,000 or more to replace just that one engineer. The average size of an engineering team is ten people so only three will remain in 12 months. These are the high costs of playing the probability hiring game, fueled by unconscious and conscious biases and systems that game recruiters into believing they are making progress when they’re automating mediocre or worse decisions. Hiring managers will have better luck betting in Las Vegas or playing Powerball than hiring the best possible candidate if they rely on systems that only deliver a marginal probability of success at best.

Betting on solid data and personalization at scale, on the other hand, delivers real results. Real data slices through the probabilities and is the best equalizer there is at eradicating conscious and unconscious biases from hiring decisions. Hiring managers, HR recruiters, directors and Chief Human Resource Officers (CHROs) vow they are strong believers in diversity. Many are abandoning the probability hiring game for AI- and machine learning-based approaches to talent management that strip away any extraneous data that could lead to bias-driven hiring decisions. Now candidates get evaluated on their capabilities and innate strengths and how strong a match they are to ideal candidates for specific roles.

A Data-Driven Approach To Finding Employees Who Can Scale

Personalization at scale is more than just a recruiting strategy; it’s a talent management strategy intended to flex across the longevity of every employees’ tenure. Attaining personalization at scale is essential if any growing business is going to succeed in attracting, acquiring and growing talent that can support their growth goals and strategies. Eightfold’s approach makes it possible to scale personalized responses to specific candidates in a company’s candidate community while defining the ideal candidate for each open position. Personalization at scale has succeeded in helping companies find the right person to the right role at the right time and, for the first time, personalize every phase of recruitment, retention and talent management at scale.

Eightfold is pioneering the use of a self-updating corporate candidate database. Profiles in the system are now continually updated using external data gathering, without applicants reapplying or submitting updated profiles. The taxonomies supported in the corporate candidate database make it possible for hiring managers to define the optimal set of capabilities, innate skills, and strengths they need to fill open positions.

Lessons Learned at PARC
Russell Williams, former Vice President of Human Resources at PARC, says the best strategy he has found is to define the ideal attributes of high performers and look to match those profiles with potential candidates. “We’re finding that there are many more attributes that define a successful employee in our most in-demand positions including data scientist that are evident from just reviewing a resume and with AI, I want to do it at scale,” Russell said. Ashutosh Garg, Eightfold founder, added: “that’s one of the greatest paradoxes that HR departments face, which is the need to know the contextual intelligence of a given candidate far beyond what a resume and existing recruiting systems can provide.”  One of the most valuable lessons learned from PARC is that it’s possible to find the find candidates who excel at unlearning, learning, defining and diligently pursuing their learning roadmaps that lead to reinventing their skills, strengths, and marketability.

Conclusion

Machine learning algorithms capable of completing millions of pattern matching comparisons per second provides valuable new insights, enabling companies to find those who excel at reinventing themselves. The most valuable employees who can scale any business see themselves as learning entrepreneurs and have an inner drive to master new knowledge and skills. And that select group of candidates is the catalyst most often responsible for making the greatest contributions to a company’s growth.

%d bloggers like this: