Skip to content
Advertisements

Posts tagged ‘Artifical Intelligence’

How AI & Machine Learning Are Redefining The War For Talent

These and many other fascinating insights are from Gartner’s recent research note, Cool Vendors in Human Capital Management for Talent Acquisition (PDF, 13 pp., client access reqd.) that illustrates how AI and machine learning are fundamentally redefining the war for talent. Gartner selected five companies that are setting a rapid pace of innovation in talent management, taking on Human Capital Management’s (HCM) most complex challenges. The five vendors Gartner mentions in the research note are AllyO, Eightfold, jobpal, Knack, and Vettd. Each has concentrated on creating and launching differentiated applications that address urgent needs enterprises have across the talent acquisition landscape. Gartner’s interpretation of the expanding Talent Acquisition Landscape is shown below (please click on the graphic to expand):

Source: Gartner, Cool Vendors in Human Capital Management for Talent Acquisition, Written by Jason Cerrato, Jeff Freyermuth, John Kostoulas, Helen Poitevin, Ron Hanscome. 7 September 2018

Company Growth Plans Are Accelerating The War For Talent

The average employee’s tenure at a cloud-based enterprise software company is 19 months; in the Silicon Valley, this trends to 14 months due to intense competition for talent according to C-level executives leading these companies. Fast-growing enterprise cloud computing companies and many other businesses like them need specific capabilities, skill sets, and associates who know how to unlearn old concepts and learn new ones. Today across tech and many other industries, every company’s growth strategy is predicated on how well they attract, engage, screen, interview, select and manage talent over associates’ lifecycles.

Of the five companies Gartner names as Cool Vendors in the field of Human Capital Management for Talent Acquisition, Eightfold is the only one achieving personalization at scale today. Attaining personalization at scale is essential if any growing business is going to succeed in attracting, acquiring and growing talent that can support their growth goals and strategies. Eightfold’s approach makes it possible to scale personalized responses to specific candidates in a company’s candidate community while defining the ideal candidate for each open position.

Gartner finds Eightfold noteworthy for its AI-based Talent Intelligence Platform that combines analysis of publicly available data, internal data repositories, HCM systems, ATS tools, and spreadsheets then creates ontologies based on organization-specific success criteria. Each ontology, or area of talent management interest, is customizable for further queries using the app’s easily understood and navigated user interface. Gartner also finds that Eightfold.ai is one of the first examples of a self-updating corporate candidate database. Profiles in the system are now continually updated using external data gathering, without applicants reapplying or submitting updated profiles. The Eightfold.ai Talent Intelligence Platform is shown below:

Taking A Data-Driven Approach to Improve Diversity

AI and machine learning have the potential to remove conscious and unconscious biases from hiring decisions, leading to hiring decisions based on capabilities and innate skills. Many CEOs and senior management teams are enthusiastically endorsing diversity programs yet struggling to make progress. AI and machine learning-based approaches like Eightfold’s can help to accelerate them to their diversity goals and attain a more egalitarian workplace. Data is the great equalizer, with a proven ability to eradicate conscious and unconscious biases from hiring decisions and enable true diversity by equally evaluating candidates based on their experience, growth potential and strengths.

Conclusion

At the center of every growing business’ growth plans is the need to attract, engage, recruit, and retain the highest quality employees possible. As future research in the field of HCM will show, the field is in crisis because it’s relying more on biases than solid data. Breaking through the barrier of conscious and unconscious biases will provide contextual intelligence of an applicant’s unique skills, capabilities and growth trajectories that are far beyond the scope of any resume or what an ATS can provide. The war for talent is being won today with data and insights that strip away biases to provide prospects who are ready for the challenges of helping their hiring companies grow.

Advertisements

Gartner’s Hype Cycle for Emerging Technologies, 2017 Adds 5G, Edge Computing For First Time

  • Gartner added eight new technologies to the Hype Cycle this year including 5G, Artificial General Intelligence, Deep Learning, Edge Computing, Serverless PaaS.
  • Virtual Personal Assistants, Personal Analytics, Data Broker PaaS (dbrPaaS) are no longer included in the Hype Cycle for Emerging Technologies.

The Hype Cycle for Emerging Technologies, 2017 provides insights gained from evaluations of more than 2,000 technologies the research and advisory firms tracks. From this large base of technologies, the technologies that show the most potential for delivering a competitive advantage over the next five to 10 years are included in the Hype Cycle.

The eight technologies added to the Hype Cycle this year include 5G, Artificial General Intelligence, Deep Learning, Deep Reinforcement Learning, Digital Twin, Edge Computing, Serverless PaaS and Cognitive Computing. Ten technologies not included in the hype cycle for 2017 include 802.11ax, Affective Computing, Context Brokering, Gesture Control Devices, Data Broker PaaS (dbrPaaS), Micro Data Centers, Natural-Language Question Answering, Personal Analytics, Smart Data Discovery and Virtual Personal Assistants.

The three most dominant trends include Artifical Intelligence (AI) Everywhere, Transparently Immersive Experiences, and Digital Platforms. Gartner believes that key platform-enabling technologies are 5G, Digital Twin, Edge Computing, Blockchain, IoT Platforms, Neuromorphic Hardware, Quantum Computing, Serverless PaaS and Software-Defined Security.

Key takeaways from this year’s Hype Cycle include the following:

  • Heavy R&D spending from Amazon, Apple, Baidu, Google, IBM, Microsoft, and Facebook is fueling a race for Deep Learning and Machine Learning patents today and will accelerate in the future – The race is on for Intellectual Property (IP) in deep learning and machine learning today. The success of Amazon Alexa, Apple Siri, Google’s Google Now, Microsoft’s Cortana and others are making this area the top priority for R&D investment by these companies today. Gartner predicts deep-learning applications and tools will be a standard component in 80% of data scientists’ tool boxes by 2018. Amazon Machine Learning is available on Amazon Web Services today, accessible here.  Apple has also launched a Machine Learning JournalBaidu Research provides a site full of useful information on their ongoing research and development as well. Google Research is one of the most comprehensive of all, with a wealth of publications and research results.  IBM’s AI and Cognitive Computing site can be found here. The Facebook Research site provides a wealth of information on 11 core technologies their R&D team is working on right now. Many of these sites also list open positions on their R&D teams.
  • 5G adoption in the coming decade will bring significant gains for security, scalability, and speed of global cellular networks – Gartner predicts that by 2020, 3% of network-based mobile communications service providers (CSPs) will launch 5G networks commercially. The Hype Cycle report mentions that from 2018 through 2022 organizations will most often utilize 5G to support IoT communications, high definition video and fixed wireless access. AT&T, NTT Docomo, Sprint USA, Telstra, T-Mobile, and Verizon have all announced plans to launch 5G services this year and next.
  • Artificial General Intelligence is going to become pervasive during the next decade, becoming the foundation of AI as a Service – Gartner predicts that AI as a Service will be the enabling core technology that leads to the convergence of AI Everywhere, Transparently Immersive Experiences and Digital Platforms. The research firm is also predicting 4D Printing, Autonomous Vehicles, Brain-Computer Interfaces, Human Augmentation, Quantum Computing, Smart Dust and Volumetric Displays will reach mainstream adoption.

Sources:

Gartner Identifies Three Megatrends That Will Drive Digital Business Into the Next Decade

Gartner Hype Cycle for Emerging Technologies, 2017 (client access required)

%d bloggers like this: