Skip to content

Posts tagged ‘AI’

Top 10 insights from Forrester’s 2026 Cybersecurity Budget Report

Top 10 Insights from Forrester’s 2026 Cybersecurity Budget Report

“With volatility now the norm, security and risk leaders need practical guidance on managing existing spending and new budgetary necessities,” states Forrester’s 2026 Budget Planning Guide.

The research firm’s planning guide for next year provides security leaders with new insights into how their clients are allocating budgets, which gives a helpful overview of the next 12 months of cybersecurity spending.

Implicit in the guide is the need for new technologies that enable organizations to be more adaptive to threats and take action on them before they become breaches. There’s also a strong focus on getting a head start on new technologies, anticipating the severity of threats new developments in AI, generative AI (genAI), deepfakes, and all other forms of weaponized technologies can pose to an organization.

Software is a solid 40% of cybersecurity spending, exceeding hardware at 15.8%, outsourcing at 15% and surpassing personnel costs at 29% by 11 percentage points. Meanwhile, security leaders face escalating threats, with generative AI attacks executing in milliseconds, a stark contrast to the average Mean Time to Identify (MTTI) of 181 days, according to IBM’s latest Cost of a Data Breach Report.

A fast-changing threatscape is changing spending priorities

Three converging threats are flipping cybersecurity on its head. What once protected organizations is now working against them. Generative AI (gen AI) is enabling attackers to craft 10,000 personalized phishing emails per minute using scraped LinkedIn profiles and corporate communications. NIST’s 2030 quantum deadline threatens retroactive decryption of $425 billion in currently protected data. Deepfake fraud that surged 3,000% in 2024 now bypasses biometric authentication in 97% of attempts, forcing security leaders to reimagine defensive architectures fundamentally.

Top ten insights from Forrester’s 2026 cybersecurity budget benchmarks

1.     Software now claims 40% of cybersecurity budgets, surpassing personnel spend. Forrester’s budget planning guide reports that software now accounts for approximately 40.2% of cybersecurity spending, eclipsing combined hardware and outsourcing budgets. It’s noteworthy that software spending is surpassing personnel costs by 11 percentage points.

Top 10 insights from Forrester’s 2026 Cybersecurity Budget Report
Source: Forrester Budget Planning Guide 2026: Security and Risk

2. Security budgets are accelerating, with 55% of global security and tech leaders forecasting significant increases next year. A robust 15% anticipate their budgets jumping more than 10%, and another 40% project hikes between 5% and 10%. Regional outlooks vary sharply: APAC is most bullish, with 22% expecting double-digit growth, compared to a cautious 9% in North America and just 12% in EMEA. However, nearly half (45%) remain reserved; 30% predict minimal budget bumps of 1%–4% or barely keeping pace with inflation, while another 10% expectSource: Forrester Budget Planning Guide 2026: Security and Risk no change, and 5% foresee cuts.

Top 10 insights from Forrester’s 2026 Cybersecurity Budget Report
Source: Forrester Budget Planning Guide 2026: Security and Risk

3. Cloud security, on-prem tech, and security awareness training are set to lead cybersecurity spending in 2026. Decision-makers are doubling down on cloud security, with 12% boosting budgets in this area by 10% or more, 11% doing the same for new on-premises solutions, and another 10% ramping up security awareness programs. Notably, investments in on-premises security technology appear twice among the top priorities, as 36% plan at least a 5% increase for both new deployments and upgrades to existing infrastructure. The numbers reflect an uneven global adoption of cloud strategies, driven by persistent concerns around cost, security, and data sovereignty. APAC is exceptionally bullish. 78% of companies there plan increased spending on new on-prem security, outpacing EMEA by 10% and North America by 8%.

Top 10 insights from Forrester’s 2026 Cybersecurity Budget Report
Source: Forrester Budget Planning Guide 2026: Security and Risk

4. Forrester recommends that security leaders broaden AI and ML security throughout the enterprise in 2026 as generative AI moves from standalone apps to essential business systems. Productivity suites, CRM platforms, and service tools now embed genAI natively, transforming workflows and widening potential attack surfaces. Enterprises urgently need comprehensive protection across AI models, data, applications, and user identities to counter risks such as model vulnerabilities, data leakage, and prompt jailbreaking. Hyperscalers like Google Cloud and Microsoft are responding quickly, while cybersecurity incumbents, notably Palo Alto Networks with its Protect AI acquisition, actively expand their footprint. Meanwhile, innovative startups, including Knostic and CalypsoAI, both featured at RSA’s Innovation Sandbox, target niche but critical genAI security gaps. Enterprises investing strategically now will securely scale genAI deployments and establish a clear competitive advantage.

5. Standalone SSE spending will sharply decline in 2026 as enterprises shift to unified SASE platforms, streamlining security operations and accelerating Zero Trust initiatives. Initially positioned to fill security gaps left by SD-WAN deployments and the surge in remote work, standalone SSE and isolated ZTNA solutions have now reached their functional limits. Leading companies increasingly adopt integrated platforms like Cato Networks’ cloud-native SASE, which consolidates SD-WAN, ZTNA, SWG, CASB, and firewall capabilities within a single, unified framework. As I’ve noted in VentureBeat, CISOs who pivot to unified SASE platforms benefit from simpler integration, superior AI-driven threat detection, and significant operational efficiencies that isolated solutions cannot deliver. Organizations proactively embracing integrated SASE from providers like Cato Networks will immediately enhance security resilience, improve operational agility, and significantly reduce vendor complexity.

6. Forrester predicts that by 2026, security leaders will seize a critical advantage by accelerating the adoption of post-quantum cryptography (PQC). With NIST’s landmark release of three core PQC standards in August 2024, organizations now have clear guidance to protect their data and applications against emerging quantum threats. Most governments align with NIST timelines, targeting legacy encryption deprecation by 2030, while Australia’s ASD urges adoption of approved PQC algorithms even sooner. Enterprises should immediately focus efforts on securing their most sensitive asymmetric cryptography, covering data at rest, data in transit, and data actively used within applications. Comprehensive cryptographic discovery and inventory tools provide the visibility required to assess readiness. Strategic partnerships with cryptoagility innovators, including Entrust, IBM, Keyfactor, Palo Alto Networks, QuSecure, SandboxAQ, and Thales, enable organizations to define a clear, secure migration path. Organizations acting decisively now will confidently navigate the quantum transition and fortify their competitive edge.

7. Machine identity management will become essential by 2026 as automated identities multiply rapidly across the IT infrastructure. Apps, AI agents, IoT devices, containers, cloud environments, and infrastructure scripts now generate identities faster than humans can manually track or manage. Enterprises urgently require solutions capable of managing these identities throughout their lifecycle, automating key rotations, and enforcing role-based access. Leading vendors, including Akeyless, BeyondTrust, CyberArk, Delinea, HashiCorp, Keyfactor, AppViewX, and emerging startups like Aembit, Astrix, Clutch, Entro, and Oasis Security, offer robust platforms to meet this challenge.

8. There will be a significant reallocation away from standalone interactive application security testing (IAST) in 2026, as operational hurdles continue to limit adoption. Originally designed to blend the runtime accuracy of dynamic application security testing (DAST) with static application security testing’s (SAST) code-level insights, standalone IAST has proven overly complex. Forrester recommends shifting budgets toward integrated IAST and DAST platforms, such as those from Invicti and HCLSoftware, that simplify deployment. Alternatively, APIs, microservices, and containers provide more transparent and consistent returns.

9. Consolidation of endpoint security and SIEM tools will accelerate in 2026. As extended detection and response (XDR) platforms gain momentum, security leaders have a clear opportunity to reduce agent sprawl, improve analyst efficiency, and lower the total cost of ownership. Vendors, including Microsoft, CrowdStrike, and Palo Alto Networks, now embed critical SIEM functions such as detection, correlation, third-party data ingestion (particularly from cloud, identity, and email), and response directly within their XDR offerings. While these integrated solutions currently don’t fully match standalone security analytics platforms, they deliver compelling advantages: simplified deployments, centralized threat context, and measurable operational savings. Organizations consolidating around unified XDR solutions today will streamline security operations and achieve faster, higher-quality threat detection.

10. By 2026, rapidly evolving generative AI will make deepfakes virtually indistinguishable from authentic media, rendering simplistic identity checks obsolete. Enterprises must proactively deploy sophisticated detection platforms using advanced ensemble modeling—spectral analysis, image artifacts, skin tone consistency, lighting anomalies, audio echo patterns, and device reputation, to ensure trusted employee verification and transaction authentication. Vendors such as GetReal Security, Sensity, and Reality Defender already offer real-time risk scoring, transparent reasoning, and integrated case management. Early adopters will safeguard identity security, sustain customer trust, and remain resilient against future deepfake threats.

Gartner’s 13 ways GenAI is improving B2B Sales is the roadmap every business needs

Gartner's 13 ways GenAI is improving B2B Sales is the roadmap every business needs

Generative AI (GenAI) ‘s potential for streamlining the most time-consuming processes in B2B sales is just getting started. As businesses increasingly rely on AI to enhance efficiency, automate routine tasks, and personalize customer engagement, GenAI is set to become a critical differentiator in the race for B2B sales and market leadership.

  • B2B sales organizations using GenAI-embedded sales technologies will reduce the time they spend prospecting and preparing for customer meetings by over 50% within two years.
  • Conversational interfaces based on GenAI will gain momentum and further revolutionize B2B selling. In 2028, they will be the driving force behind up to 60% of B2B sales interactions, up from less than 5% in 2023.
  • Centralized GenAI operations teams are also on the way, championed by Chief Revenue Officers (CROs). These teams will focus on integrating AI-driven strategies into sales and revenue operations. 35% of CROs will have GenAI operations teams online and incorporated into their companies’ strategic planning process by 2025.

The goal: find the most likely wins for GenAI in B2B Sales

Gartner’s recent report, 13 Generative AI Use Cases for B2B Sales, provides an analysis of where GenAI is helping improve B2B sales now and in the future.

“Generative artificial intelligence (GenAI) is reshaping the sales technology landscape, offering innovative solutions in areas such as prospecting, sales analytics, forecasting, and sales enablement. Tools infused with GenAI capabilities are embedded in use cases across the sales function, supporting key priorities such as revenue growth, GTM, cost optimization, and risk mitigation,” write the authors of Gartner’s study.

In defining and ranking the most valuable use cases of GenAI in B2B sales, Gartner examined where the technology is being most effectively applied to improve sales operations, increase seller productivity, and fuel future transformation.

The following multidimensional grid defines the use cases by value and feasibility.

Source: Generative AI Use Cases for B2B Sales, Gartner, Inc.

Gartner evaluated each use case for GenAI in B2B sales by scoring them on two key factors: business value and feasibility. The figure below shows the breakout of value and feasibility factors Gartner has used as a framework to rank the 13 use cases: “While we’ve defined the dimensions of value and feasibility according to our research criteria, companies are encouraged to customize these parameters to align with their own business needs,” the report states.

Source: Gartner, Inc. (2024) Generative AI Use Cases for B2B Sales

Mapping GenAI Use Cases Across Business Functions

Gartner also provides a GenAI use-case pipeline as part of their analysis to graphically explain how the 13 AI-driven strategies or use cases are distributed across business functions, including marketing, sales, and customer success.

The goal is to help organizations identify and take action on the use cases that will deliver the most significant potential impact. Gartner advises that use cases that span multiple stages of the pipeline typically deliver greater overall business value, making them strategic targets for investment. Additionally, the pipeline acts as a guide to identifying the relevant stakeholders within the organization, enabling more focused discussions and alignment on AI implementation priorities.

Source: Gartner, Generative AI Use Cases for B2B Sales.

GenAI is redefining the future of B2B Sales

Within the next three years, GenAI will emerge as one of the main factors that differentiate the most efficient and financially successful B2B sales organizations. With CROs creating operations teams to scale AI improvements across every phase of the sales process and sales teams using AI to automate reporting and manually-intensive tasks, GenAI is supposed to revamp the time-consuming work that gets in the way of selling.

Gartner’s analysis highlights that AI-driven strategies will soon dominate, with significant gains in efficiency and customer engagement. The message is clear: for sales organizations looking to stay ahead, embracing GenAI is not optional—it’s essential. Those who act now will position themselves as leaders in the evolving world of B2B sales, while those who hesitate risk being left behind.

 

BCG Shares Their Insights On What Sets GenAI’s Top Performers Apart

BCG Shares Their Insights On What Sets GenAI's Top Performers Apart

image created in DALL-E

The top 10% of enterprises have one or more GenAI applications in production at scale across their organizations. 44% of these top-performing organizations are realizing significant value from scaled predictive AI cases. 70% of top performers explicitly tailor their GenAI projects to create measurable value.

Boston Consulting Group (BCG) estimates that an organization with $20 billion in revenue can achieve gains of $500 million to $1 billion in profit using GenAI, with nearly a third of those gains coming in the first 18 months. Their recent analysis of what sets GenAI’s top performers apart, What GenAI’s Top Performers Do Differently, looks at the factors that most differentiate enterprises excelling with GenAI today.

What further differentiates these top performers from others is how they’re looking to use GenAI to redefine the functional areas of their organizations. They’re far more likely to have a solid foundation in predictive AI and four times more likely to increase their investment in AI and digital-first strategies and technologies.

Half of the enterprise leaders BCG interviewed say their organizations are testing GenAI in pilot projects today but have not achieved full-scale implementation. The remaining 40% haven’t taken any action on GenAI yet.

BCG Shares Their Insights On What Sets GenAI's Top Performers Apart

Source: Boston Consulting Group, What GenAI’s Top Performers Do Differently.

What Sets The Top 10% Apart

Two-thirds of GenAI’s top-performing enterprises aren’t digital natives like Amazon or Google but instead leaders in biopharma, energy, and insurance. BCG found that a U.S.-based energy company launched a GenAI-driven conversational platform to assist frontline technicians, increasing productivity by 7%. A biopharma company is reimagining its R&D function with GenAI and reducing drug discovery timelines by 25%.

Top GenAI performers have their greatest lead over peers across five main capabilities. These capabilities include having a clear link to business performance, modern technology infrastructure, strong data capabilities, leadership support, and a grounding in responsible AI. The steep curves shown in the graphic below suggest how these five most differentiated capabilities are essential for successful GenAI adoption at scale.

BCG Shares Their Insights On What Sets GenAI's Top Performers Apart

Source: Boston Consulting Group, What GenAI’s Top Performers Do Differently.

Key takeaways from BCG’s analysis of GenAI top performers 

Top performers excel at creating strong links between GenAI initiatives and business value. Seven in ten enterprises who are high achievers know how to build a business case for their GenAI projects and pilots. They’re focused on measuring results and quantifying value. BCG found that in a typical GenAI portfolio, 60% of the initiatives are focused on reducing costs and 40% on increasing revenue.

An all-in mindset when it comes to maintaining and growing a modern technology infrastructure. GenAI top-performing enterprises are three times more likely to already have a modular, modern IT tech stack and supporting infrastructure in place. They’re focused on being prepared to develop new, GenAI-powered services on their current and future AI models while supporting DevOps. BCG says top performers are 1.5 times more likely to focus on building the GenAI stack internally over the coming three years, underscoring their desire to make the technology a core capability for the organizations.

Are pursuing and advanced data strategy that includes unstructured data. GenAI top performers are two times more likely to have data pipelines and data management practices in place to streamline data sourcing and storage. They’re also more likely to have unstructured data expertise. BCG observes that an advanced data strategy “is a critical element of GenAI, given that models are only as strong as the data on which they’re trained.”  Organizations have found success with less mature skills in these areas, although it may take longer as they need to address infrastructure and data strategy gaps or shortcomings.

Strong leadership support for innovation, including the willingness to champion GenAI. Senior executives’ support and prioritizing an innovative culture are the most differentiating factors in defining GenAI’s high performers. Gen AI high performers who are scaling use cases are three times more likely than no-action companies to have leaders who prioritize innovation and actively support GenAI. BCG notes that these leaders often have a deep understanding of the technology’s potential impact on their industry, and they are publicly committed to ensuring that the organization capitalizes on it in new ways that generate value. “Visible support and commitment from our leadership team has been crucial, as it provided the freedom to experiment and deal with failures along the way,” said the head of data and analytics at a global media company referenced in BCG’s report.

Have responsible AI guidelines, guardrails and processes in place. Top-performing enterprises are more likely to have responsible AI frameworks, guidelines, and guardrails in place. BCG observes that a common trait top-performing enterprises have is ensuring their AI systems and workflows put humans in the loop and use only factual data. “Our research shows that leading companies are far more likely to have developed guardrails, guidelines, and policies to ensure that they follow the principles of responsible AI. In the findings, the share of scaling companies that are cautious about the potential misuse of GenAI and taking proactive measures to address these risks is 20 percentage points higher than the share of companies taking no action in this area,” write BCG’s researchers.

Top 10 Insights From Forrester’s State of Generative AI in 2024 Report

Top 10 Insights From Forrester's State of Generative AI in 2024 Report

Created with DALL-E

Over 90% of enterprise AI decision-makers have concrete plans to adopt generative AI (gen AI) for internal and customer-facing use cases. Nearly half, 47%, say productivity gains are the primary goal. Those anticipated gains are closely followed by greater innovation (44%) and cost efficiency (41%). One in three, or 34%, expect AI to deliver greater revenue growth.

Productivity gains are happening faster than enterprises can track because Shadow AI is growing quicker than many IT and security teams anticipated. OpenAI says their enterprise adoption is soaring, with over 80% of Fortune 500 companies’ workers and departments having accounts.

Enterprise workers are achieving a 40% performance boost thanks to ChatGPT based on a recent Harvard study. A second study from MIT discovered that ChatGPT reduced skill inequalities and accelerated document creation times while enabling enterprise workers to be more efficient with their time. Seventy percent haven’t told their bosses about it.

Forrester: A Wave Of Disruption Is Coming

Forrester’s recent report, The State of Generative AI, 2024, warns enterprises not to discount the impact of generative AI on their operations and to start planning for greater experimentation, governance, and security now.

Get ready for the challenges of defining and managing bring your own AI (BYOAI) as workers are inventing and adopting gen AI tools and apps faster than IT or security can keep up. Forrester advises that enterprises need to have forward-thinking governance and security guardrails in place before launching their AI-based apps.

With nearly every enterprise app and platform integrating gen AI into its feature set, it’s up to IT, security, and senior management to have an AI plan that can adapt and flex fast to the fast-growing feature set gen AI is delivering.

Enterprise AI leaders also need to define where they stand on the controversial and complex state of model training data. Forrester says that questions regarding the quality of training data using copyright material, model and data bias, and frequent “hallucinations” by models.

“In 2024, as organizations embrace the generative AI (genAI) imperative, governance and accountability will be a critical component to ensure that AI usage is ethical and does not violate regulatory requirements,” writes Forrester in their cybersecurity predictions late last year. “This will enable organizations to safely transition from experimentation to implementation of new AI-based technologies,” the report continues.

Top 10 Insights From Forrester’s State of Generative AI

The ten most valuable insights from Forrester’s State of Generative AI report provide a comprehensive overview of the current and future landscape of generative AI. Noteworthy for its balance between opportunities and risks, the report explains the hurdles in front of enterprises looking to gain value from gen AI now and in the future.

Here are the top 10 insights from the report:

Gen AI shows strong potential to improve and scale enterprise operations. Forrester is optimistic regarding the potential of gen AI to increase productivity and deliver measurable business value. “Forrester expects that gen AI will add convenience to and remove friction from a variety of experiences, reshape jobs in ways we are only beginning to contemplate and disrupt organizations and industries,” writes Forrester’s research team in the report. The report explains that there are three broad tiers of generative AI suppliers, further supporting the market’s expansion and growth.

Top 10 Insights From Forrester's State of Generative AI in 2024 Report

Source: Forrester, The State of Generative AI, 2024 report. January 26, 2024

 

Large Language Models will continue to dominate the gen AI narrative. Large language models (LLMs), including Anthropic, Google, Meta, and OpenAI’s GPT series, will continue to dominate the gen AI landscape. Forrester notes that significant data and infrastructure requirements make the task of creating and maintaining an LLM difficult for companies considering competing in the market. Open-source LLMs are redefining the market, a point Forrester touches on briefly.

Gen AI is becoming part of planning cycles in enterprises: Forrester found that over 90% of global enterprise AI decision-makers have definite plans to implement generative AI. Internal use cases are dominating the planning cycles of enterprise AI leaders today.

Top 10 Insights From Forrester's State of Generative AI in 2024 Report

Source: Forrester, The State of Generative AI, 2024 report. January 26, 2024

Overcoming technical skills shortages and integration challenges stand in the way of achieving benefits. A third of enterprise AI leaders say that lack of technical skills in their organizations is the single greatest roadblock to their gaining the benefits they’re looking for from gen AI. Twenty-eight percent say they’re having difficulty integrating gen AI into their existing tech stacks and infrastructure. The potential to gain significant benefits from gen AI motivates enterprise AI leaders to look for new ways to overcome technical skills shortages and find new ways to integrate gen AI into their infrastructure.

Top 10 Insights From Forrester's State of Generative AI in 2024 Report

Source: Forrester, The State of Generative AI, 2024 report. January 26, 2024

Ethical and safe gen AI use will require new cybersecurity and governance approaches. Enterprises need to decide how they approach the most challenging and controversial aspects of LLMs, gen AI, and the future of AI at scale in their companies now rather than later. The core message of Forrester’s report is for enterprises not to procrastinate but to start making plans now for their stance on the issues of model bias, data security, regulatory compliance, and ethics of model training.

Weaponized LLMs are a fact of life for every enterprise looking to adopt these technologies today. There’s also the growing threat of intellectual property and confidential data being accidentally shared with LLMs via ChatGPT and comparable chatbots. The intensity cybersecurity providers are putting behind this problem makes it one of the fastest evolving areas in the industry today.

While not mentioned by Forrester in their report, these vendors are defining the state of the art when it comes to protecting confidential data being entered into LLMs. Cisco, Ericom Security by Cradlepoint’s Generative AI isolation, Menlo Security, Nightfall AIWiz, and Zscaler have all developed and launched solutions to reduce the threat of confidential data making it into LLMs via chatbots.

The use of a virtual browser that is separate from an organization’s network environment in the Ericom Cloud distinguishes Ericom’s Generative AI Isolation. Data loss protection, sharing, and access policy controls are applied in the cloud to prevent confidential data, PII, or other sensitive information from being submitted to the LLM and potentially exposed.

“Generative AI websites provide unparalleled productivity enhancements, but organizations must be proactive in addressing the associated risks,” said Gerry Grealish, Vice President of Marketing Ericom Cybersecurity Unit of Cradlepoint. “Our Generative AI Isolation solution empowers businesses to attain the perfect balance, harnessing the potential of generative AI while safeguarding against data loss, malware threats, and legal and compliance challenges.”

Early adopters are implementing gen AI in a wide variety of use cases, ranging from operations to customer engagement and product development. Forrester notes that they’re seeing organizations use knowledge management bots to accelerate workflows, automate tasks, generate new ideas, and drive innovation across a broad base of use cases. Early adopters are also piloting gen AI for diverse use cases across operations, customer engagement, and product development. Forester emphasizes that for external use cases, they’re seeing enterprises adopt a main-in-the-middle workflow to strengthen model training with human intelligence – and avert potential errors in model response.

Top 10 Insights From Forrester's State of Generative AI in 2024 Report

Source: Forrester, The State of Generative AI, 2024 report. January 26, 2024

Internal use cases precede external use cases as enterprises look to gain expertise in controlled environments. Companies will initially focus on internal use cases for generative AI to refine their models before slowly expanding to customer-facing applications, employing heavy human-in-the-loop management. Forrester is seeing gen AI being used internally to drive employee productivity and workflow optimization gains first. The top three use cases of employee productivity, knowledge management, and software development are all focused on internal improvements.

Legal and intellectual property uncertainty will continue to surround gen AI. Forrester implies there’s going to be an increasingly complex, controversial legal landscape regarding the data models are trained on, especially when it comes to copyrighted content.

Privacy and regulatory concerns are going to continue influencing adoption. Forrester is seeing enterprises in heavily regulated industries exercising extreme caution to protect company and customer data, with some even banning tools like ChatGPT over concerns about data protection and regulatory backlash.

Enterprises need to get a sense of urgency about preparing for gen AI governance and experimentation. Having a clear vision of how they’re going to adopt gen AI is essential if enterprises are going to succeed in governing these new technologies at scale. The combination of growing and recruiting in-house skills, having a solid plan for BYOAI, and defining guardrails for internal use cases are all needed to avoid being blindsided by risks.

Gartner Predicts AI Software Will Grow To $297 Billion By 2027

Gartner Predicts AI Software Will Grow To $297 Billion By 2027

Image created by DALL-E

Predicting global spending on AI software will surge from $124 billion in 2022 to $297 billion in 2027, Gartner forecasts the market will grow at a 19.1% compound annual growth rate in the next six years.

Generative AI (GenAI) software spending is expected to skyrocket from 8% in 2023 to 35% by 2027. GenAI’s rapid growth is attributed to enterprise software vendors integrating AI tools into current and future releases, streamlining the widespread adoption of GenAI-based features and new apps, emerging as the fastest-growing category of AI software.

Gartner predicts the integration of AI tools will be most prevalent in marketing, product design, and customer service, reflecting a shift towards more personalized and efficient operations. The research firm provides an extensive analysis of AI software’s growth areas and opportunities in their recently published report, Forecast Analysis: Artificial Intelligence Software, 2023-2027, Worldwide (client access required). The forecast is based on over 500 AI use cases sourced from Gartner’s AI use case prisms and related research.

What Driving The AI Market Boom?

Key assumptions that are driving the forecast include the prediction that greater than 70% of independent software vendors (ISVs) will have embedded GenAI capabilities in their enterprise applications by 2026, a major jump from fewer than 1% today.

Thirty-nine percent of worldwide organizations will be in the experimentation phase of Gartner’s AI adoption curve by 2025, with 14% being in the expansion phase. Gartner predicts that by 2027, 36% of organizations in the experimentation phase will also start to adopt use cases with high business value but low time-to-financial impact (TOFI).

Another factor driving long-term market growth is how spending on AI software increases with organizational maturity. Gartner notes that organizational maturity is lower today versus the higher hype levels and market interest in AI technologies. As organizations gain greater maturity with AI experimentation, spending will increase.

Gartner Predicts AI Software Will Grow To $297 Billion By 2027

Source: Gartner, Forecast Analysis: Artificial Intelligence Software, 2023-2027, Worldwide

“We expect to see ongoing demand for more AI enhancements within software applications and more opportunities for providers to deliver software to build AI. However, do not expect these markets to become saturated (where supply outstrips demand) during the forecast period,” Gartner’s analysts write in the forecast analysis.

Application areas growing the fastest

Gartner predicts AI spending on financial management system (FMS) components will be the largest application market overall. FMS supports the office of finance with capabilities for forecasting, planning, cash application and collections, balance reconciliation, and others.

FMS vendors are doubling down on AI already to provide proven productivity and optimization support, integrating AI-based features in their apps and platforms. AI’s inherent advantages quickly lead to quantified performance and productivity gains with FMS systems, which are table stakes for building a solid business case for potential customers.

Digital commerce applications are the highest-growth AI application market. Digital commerce applications are designed to streamline commerce operations and related areas, including optimization, customer segmentation, image categorization, and others. Gartner defines the AI capabilities in digital commerce to include personalization, automated execution, and content generation.

Gartner Predicts AI Software Will Grow To $297 Billion By 2027

Source: Gartner, Forecast Analysis: Artificial Intelligence Software, 2023-2027, Worldwide

Predicting Generative AI’s Growth

Gartner is predicting that GenAI will eventually become a cornerstone of all AI software spending, reaching 35% of worldwide revenues by 2027.

The report’s authors point to the proliferation of AI copilots being integrated into a wide variety of enterprise systems as a primary catalyst driving this area of the market’s growth. Copilot systems are in use today within email systems, customer support chatbots, and a wide variety of marketing applications, with content creation and personalization vendors fast-tracking copilots into their apps and platforms.

One of the many data points that support the optimistic growth forecast for GenAI is Microsoft’s success with their Microsoft Dynamics 365 Copilot, launched in March of last year. Since then, more than 130,000 organizations have experienced copilot capabilities in Microsoft Dynamics 365 and Microsoft Power Platform.

Gartner Predicts AI Software Will Grow To $297 Billion By 2027

Source: Gartner, Forecast Analysis: Artificial Intelligence Software, 2023-2027, Worldwide

Large Language Models (LLMs) are the growth catalyst natural language platforms need

Gartner is predicting that the data science and AI platform market will see the greatest amount of software spending in the forecast period. They’ve defined the market as including machine learning (ML) platforms and cloud AI developer services. “The data science and AI platforms market is accelerated by the growth of AI and the democratization of technology, where capabilities like ease of use, workflow, collaboration, and deployment provide support for citizen data scientists,” writes Gartner’s analysts in the report.

The leading AI platforms seeing the greatest growth are natural language technologies (which include LLMs), data science and AI platforms, computer vision platforms, and analytics and BI platforms. LLMs will be the fuel that keeps natural language technology-based platforms growing for the next three years. They’re the emerging workhouses of the AI software market.

Gartner Predicts AI Software Will Grow To $297 Billion By 2027

Source: Gartner, Forecast Analysis: Artificial Intelligence Software, 2023-2027, Worldwide

 

Five Ways AI Can Help Create New Smart Manufacturing Startups

smart manufacturing, AI, machine learning

AI and machine learning’s potential to drive greater visibility, control, and insight across shop floors while monitoring machines and processes in real-time continue to attract venture capital. $62 billion is now invested in 5,396 startups concentrating on the intersection of AI, machine learning, manufacturing, and Industry 4.0, according to Crunchbase.

PwC’s broader tech sector analysis shows a 30% year-over-year growth in funding rounds that reached $293.2 billion in 2021. Smart manufacturing startups are financed by seed rounds at 52%, followed by early-stage venture funding at 33%. The median last funding amount was $1.6 million, with the average being $9.93 million.

 Abundant AI startup opportunities in smart manufacturing and industry 4.0 

According to Gartner, “The underlying concept of Industry 4.0 is to connect embedded systems and smart production facilities to generate a digital convergence between industry, business, and internal functions and processes.” As a result, Industry 4.0 is predicted to grow from $84.59 billion in 2020 to $334.18 billion by 2028. AI and machine learning adoption in manufacturing are growing in five core fields: smart production, products and services improvements, business operations and management, supply chain, and business model decision-making. Deloitte’s survey on AI adoption in manufacturing found that 93% of companies believe AI will be a key technology to drive growth and innovation.

Machine intelligence (MI) is one of the primary catalysts driving increased venture capital investment in smart manufacturing. Startup CEOs and their customers want AI and machine learning models based on actual data, and machine intelligence is helping to make that happen. An article by McKinsey & Company provides valuable insights into market gaps for new ventures. McKinsey’s compelling data point is that those leading companies using MI achieve 3X to 4X the impact of their peers. However, 92% of leaders also have a process to track incomplete or inaccurate data – which is another market gap startups need to fill.

AI, Industry 4, smart manufacturing

McKinsey and the Massachusetts Institute of Technology (MIT) collaborated on a survey to identify machine intelligence leaders’ KPI gains relative to their peers. They found that leaders achieve efficiency, cost, revenue, service, and time-to-market advantages. Source: Toward smart production: Machine intelligence in business operations, McKinsey & Company. February 1, 2022.

Based on the uplift MI creates for new smart manufacturing startup funding and the pervasive need manufacturers have to improve visibility & control across shop floors, startups have many potential opportunities. The following are five that AI and machine learning is helping to create:

  1. AI-enabled Configure, Price, and Quote (CPQ) systems that can factor in supply chain volatility on product costs are needed. Several startups are already using AI and machine learning in CPQ workflows, and they compete with the largest enterprise software providers in the industry, including Salesforce, SAP, Microsoft, and others. However, no one has taken on the challenge of using AI to factor in how supply chain volatility changes standard and actual costs in real-time. For example, knowing the impact of pricing changes based on an allocation, how does that impact standard costs per unit on each order? Right now, an analyst needs to spend time doing that. AI and machine learning could take on that task so analysts could get to the larger, more complex, and costly supply chain problems impacting CPQ close rates and revenue.
  2. Using AI-enabled real-time data capture techniques to identify anomalies in throughput as an indicator of machine health. The aggregated data manufacturing operations produced every day holds clues regarding each machine’s health on the shop floor. Automated data capture can identify scrap rates, yield rates and track actual costs. However, none of them can analyze the slight variations in process flow product outputs to warn of possible machine or supply chain issues. Each process manufacturing machine runs at its cadence or speed, and having an AI-based sensor system track and analyze why speeds are off could save thousands of dollars in maintenance costs and keep the line running. In addition, adding insight and intelligence to the machine’s real-time data feeds frees quality engineers to concentrate on more complex problems.
  3. Industrial Internet of Things (IIoT) and edge computing data can be used for fine-tuning finite scheduling in real-time. Finite scheduling is part of the broader manufacturing systems organizations rely on to optimize shop floor schedules, machinery, and staff scheduling. It can be either manually intensive or automated to provide operators with valuable insights. A potential smart manufacturing opportunity is a finite scheduler that relies on AI and machine learning to keep schedules on track and make trade-offs to ensure resources are used efficiently. Finite schedulers also need greater accuracy in factoring in frequent changes to delivery dates. AI and machine learning could drive greater on-time delivery performance when integrated across all the shop floors a manufacturer relies on.
  4. Automated visual inspections and quality analysis to improve yield rates and reduce scrap. Using visual sensors to capture data in real-time and then analyze them for anomalies is in its nascent stages of deployment and growth. However, this is an area where captured data sets can provide machine learning algorithms with enough accuracy to identify potential quality problems on products before they leave the factory. Convolutional neural networks are an effective machine learning technique for identifying patterns and anomalies in images. They’re perfect for the use case of streamlining visual inspection and in-line quality checks in discrete, batch, and process manufacturing.
  5. Coordinated robotics (Cobots) to handle assemble-to-order product assembly. The latest cobots can be programmed to stay in sync with each other and perform pick, pack, ship, and place materials in warehouses. What’s needed are advanced cobots that can handle simple product assembly at a more competitive cost as manufacturers continue to face chronic labor shortages and often run a shift with less than half the teams they need.

Talent remains an area of need 

Manufacturers’ CEOs and COOs say that recruiting and retaining enough talent to run all the production shifts they need is the most persistent issue. In addition, those manufacturers located in remote regions of the world are turning to robotics to fulfill orders, which opens up opportunities for integrating AI and machine learning to enable cobots to complete assemble-to-order tasks. The unknown impact of how fast supply chain conditions change needs work from startups, too, especially in tracking actual cost performance. These are just a few opportunities for startups looking to apply AI and machine learnings’ innate strengths to solve complex supply chain, manufacturing, quality management, and compliance challenges.

How A Startup Uses AI To Help You Find The Market Research You Need

How A Startup Uses AI To Help You Find The Market Research You Need

  • 95% of the content essential for decision making in an organization is unstructured, residing in PDFs and various file formats that defy easy indexing and quick access, according to MIT Media Labs.
  • 80% of typical organizations’ data is unstructured, slowing down work, often leading to less-than-optimal decision-making, according to an Accenture study published earlier this year.
  • Organizations use 35% of their structured data for insights and decision-making, but only 25% of their unstructured enterprise data, according to an Accenture study on how data is used for decision-making.
  • 60% to 80% of employees can’t find the information they are looking for even when there’s content management or knowledge management system in place, according to IBM’s knowledge management study.

Bottom Line: Stravito is an AI startup that’s combining machine learning, Natural Language Processing (NLP) and Search to help organizations find and get more value out of the many market research reports, competitive, industry, market share, financial analysis and market projection analyses they have by making them searchable.

When It Comes To Finding Market Research Data, Intranets Aren’t Getting It Done

Facing tight deadlines to get a marketing plan together for a new product, channel, or selling strategy, market research and product marketing teams will give up looking for a report they know they’ve bought and re-purchase it. The tighter the deadline and the more important the plan, the more this happens.

When a quick call to the Market Research Analyst who has access privileges to all the market research subscriptions doesn’t have the reports a team needs, they either move on without the data or repurchase the report. Having spent the first years of my career as a Market Research Analyst, I can attest to the accuracy of IBM’s finding that 30% of a typical knowledge workers’ day is spent searching for information and understanding its context and original methodology. All reports our organization had distribution rights to internally went on the Intranet site. There were hundreds of reports available online on an Intranet platform with mediocre search capabilities.

The company was founded by Thor Olof Philogène and Sarah Lee in 2017, who together identified an opportunity to help companies be more productive getting greater value from their market research investments. Thor Olof Philogène and Andreas Lee were co-founders of NORM, a research agency where both worked for 15 years serving multinational brands, eventually selling the company to IPSOS. While at NORM, Anders and Andreas were receiving repeated calls from global clients that had bought research from them but could not find it internally and ended up calling them asking for a copy. Today the startup has Carlsberg, Comcast, Colruyt Group, Danone, Electrolux, Pepsi Lipton and others. Stravito has offices in Stockholm (HQ), Malmö and Amsterdam.

Instead of settling for less-than-optimal market and industry data that partially deliver the insights needed for an exceptional product launch or sales campaign, marketing & senior management teams need to set their sights higher. It’s time to replace legacy Intranet sites and their limited search functions with AI-based search engines that auto-tag content and build taxonomies based on content attributes in real-time. Stravito combines AI, machine learning, NLP and Search on a single platform that can index every major file type an organization uses, creating a taxonomy that streamlines search queries.

Having AI as the foundation of the Stravito platform delivers the following benefits:

  • AI-powered fast search gives individuals the ability to find and share insights and information quicker than any legacy Intranet technology could. With everyone working from home and self-service being a goal every marketing, business planning and IT department is trying to achieve today, Stravito’s architecture is designed for simple queries and requests anyone can quickly learn to create.
  • Relying on AI and machine learning to alleviate the need to manually upload and tag hundreds of market research reports and analysis. Stravito’s approach to data categorization using AI also identifies and removes duplicate report copies and can be configured to filter out any reports past a specific date. Search perimeters, auto-tagging and in-PDF search options are all configurable. Stravito will rank PDFs by the percentage of relevant content they have for a specific search term, providing a bar graph designating which pages have the most relevant content.
  • Stravito’s design team has successfully combined AI, machine learning and advanced user interface design to produce an application comparable to Spotify, Google and Netflix. Developing and launching an enterprise-level search engine designed for usability first is noteworthy. Many enterprise applications still aren’t achieving this design goal despite being mentioned as a first priority by enterprise software vendors. As can be seen from their search results screen, Stravito’s approach is to combine information discovery and collaboration:

 

  • Stravito deserves credit for finding new ways to use AI and machine learning to accomplish drag-and-drop integration of any commonly used file format in an organization – and then have it assigned to a taxonomy in seconds. Stravito’s innovative use of AI, machine learning and auto-tagging provides its customers with a simple drag-and-drop interface that supports bulk uploads. The platform has API integration designed with any market research or advisory service with an API library compatible with their platform. Their customer base actively relies on Euromonitor and Mintel today, for example.

Conclusion

Stravito fills the gap legacy Intranet technologies and current generation collaboration platforms are not addressing. That’s the need to provide a more powerful search engine, one capable of continually adapting to new information and documents. Supervised machine learning has proven effective for taking on challenges related to creating and keeping taxonomies current. Stavito’s product strategy of providing personalized recommendations for the content of interest is a natural progression of their platform. For organizations overwhelmed with research data yet can’t seem to get the reports to decision-makers fast enough, the Stravito platform is worth checking out.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

  • AI and Machine Learning are on track to generate between $1.4 Trillion to $2.6 Trillion in value by solving Marketing and Sales problems over the next three years, according to the McKinsey Global Institute. 
  • Marketers’ use of AI soared between 2018 and 2020, jumping from 29% in 2018 to 84% in 2020, according to Salesforce Research’s most recent State of Marketing Study. 
  • AI, Machine Learning, marketing & advertising technologies, voice/chat/digital assistants, and mobile tech & apps are the five technologies that will have the greatest impact on the future of marketing, according to Drift’s 2020 Marketing Leadership Benchmark Report.

Chief Marketing Officers (CMOs) and the marketing teams they lead are expected to excel at creating customer trust, a brand that exudes empathy and data-driven strategies that deliver results. Personalizing channel experiences at scale works when CMOs strike the perfect balance between their jobs’ emotional and logical, data-driven parts. That’s what makes being a CMO today so challenging. They’ve got to have the compassion of a Captain Kirk and the cold, hard logic of a Dr. Spock and know when to use each skill set. CMOs and their teams struggle to keep the emotional and logical parts of their jobs in balance.

Asked how her team keeps them in balance, the CMO of an enterprise software company told me she always leads with empathy, safety and security for customers and results follow. “Throughout the pandemic, our message to our customers is that their health and safety come first and we’ll provide additional services at no charge if they need it.” True to her word, the company offered their latest cybersecurity release update to all customers free in 2020.  AI and machine learning tools help her and her team test, learn and excel iteratively to create an empathic brand that delivers results.

The following are ten ways AI and machine learning are improving marketing in 2021:

1.    70% of high-performance marketing teams claim they have a fully defined AI strategy versus 35% of their under-performing peer marketing team counterparts. CMOs who lead high-performance marketing teams place a high value on continually learning and embracing a growth mindset, as evidenced by 56% of them planning to use AI and machine learning over the next year. Choosing to put in the work needed to develop new AI and machine learning skills pays off with improved social marketing performance and greater precision with marketing analytics. Source: State of Marketing, Sixth Edition. Salesforce Research, 2020.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

2.    36% of marketers predict AI will have a significant impact on marketing performance this year. 32% of marketers and agency professionals were using AI to create ads, including digital banners, social media posts and digital out-of-home ads, according to a recent study by Advertiser Perceptions. Source: Which Emerging Tech Do Marketers Think Will Most Impact Strategy This Year?, Marketing Charts, January 5, 2021.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

3.    High-performing marketing teams are averaging seven different uses of AI and machine learning today and just over half (52%) plan on increasing their adoption this year. High-performing marketing teams and the CMOs lead them to invest in AI and machine learning to improve customer segmentation. They’re also focused on personalizing individual channel experiences. The following graphic underscores how quickly high-performing marketing teams learn then adopt advanced AI and machine learning techniques to their competitive advantage. Source: State of Marketing, Sixth Edition. Salesforce Research, 2020.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

4.    Marketers use AI-based demand sensing to better predict unique buying patterns across geographic regions and alleviate stock-outs and back-orders. Combining all available data sources, including customer sentiment analysis using supervised machine learning algorithms, it’s possible to improve demand sensing and demand forecast accuracy. ML algorithms can correlate location-specific sentiment for a given product or brand and a given product’s regional availability. Having this insight alone can save the retail industry up to $50B a year in obsoleted inventory.  Source: AI can help retailers understand the consumer, Phys.org. January 14, 2019.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

5.    Disney is applying AI modeling techniques, including machine learning algorithms, to fine-tune and optimize its media mix model. Disney’s approach to gaining new insights into its media mix model is to aggregate data from across the organization including partners, prepare the model data and then transform it for use in a model. Next, a variety of models are used to achieve budget and media mix optimization. Then compare scenarios. The result is a series of insights that are presented to senior management. The following dashboard shows the structure of how they analyze AI-based data internally. The data shown is, for example only; this does not reflect Disney’s actual operations.   Source: How Disney uses Tableau to visualize its media mix model (https://www.tableau.com/best-marketing-dashboards)

10 Ways AI And Machine Learning Are Improving Marketing In 2021

6.    41% of marketers say that AI and machine learning make their greatest contributions to accelerating revenue growth and improving performance. Marketers say that getting more actionable insights from marketing data (40%) and creating personalized consumer experiences at scale (38%) round out the top three uses today. The study also found that most marketers, 77%, have less than a quarter of all marketing tasks intelligently automated and 18% say they haven’t intelligently automated any tasks at all. Marketers need to look to AI and machine learning to automated remote, routine tasks to free up more time to create new campaigns. Source: Drift and Marketing Artificial Intelligence Institute, 2021 State of Marketing AI Report.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

7.    Starbucks set the ambitious goal of being the world’s most personalized brand by relying on predictive analytics and machine learning to create a real-time personalization experience. The global coffee chain faced several challenges starting with how difficult it was to target individual customers with their existing IT infrastructure. They were also heavily reliant on manual operations across their thousands of stores, which made personalization at scale a formidable challenge to overcome. Starbucks created a real-time personalization engine that integrated with customers’ account information, the mobile app, customer preferences, 3rd party data and contextual data. They achieved a 150% increase in user interaction using predictive analytics and AI, a 3X improvement in per-customer net incremental revenues. The following is a diagram of how DigitalBCG (Boston Consulting Group) was able to assist them. Source: Becoming The World’s Most Personalized Brand, DigitalBCG.  

10 Ways AI And Machine Learning Are Improving Marketing In 2021

8.    Getting personalization-at-scale right starts with a unified Customer Data Platform (CDP) that can use machine learning algorithms to discover new customer data patterns and “learn” over time.  For high-achieving marketing organizations, achieving personalization-at-scale is their highest and most urgent priority based on Salesforce Research’s most recent State of Marketing survey. And McKinsey predicts personalization-at-scale can create $1.7 trillion to $3 trillion in new value. For marketers to capture a part of this value, changes to the mar-tech stack (shown below) must be supported by clear accountability and ownership of channel and customer results. Combining a modified mar-tech stack with clear accountability delivers results.   Source: McKinsey & Company, A technology blueprint for personalization at scale. May 20, 2019. By Sean Flavin and Jason Heller.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

9.    Campaign management, mobile app technology and testing/optimization are the leading three plans for a B2C company’s personalization technologies. Just 19% of enterprises have adopted AI and machine learning for B2C personalization today. The Forrester Study commissioned by IBM also found that 55% of enterprises believe the technology limitations inhibit their ability to execute personalization strategies. Source: A Forrester Consulting Thought Leadership Paper, Commissioned by IBM, Personalization Demystified: Enchant Your Customers By Going From Good To Great, February 2020.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

10. Successful AI-driven personalization strategies deliver results beyond marketing, delivering strong results enterprise-wide, including lifting sales revenue, Net Promoter Scores and customer retention rates. When personalization-at-scale is done right, enterprises achieve a net 5.63% increase in sales revenue, 10.26% increase in order frequency, uplifts in average order value and an impressive 13.25% improvement in cross-sell/up-sell opportunities. The benefits transcend marketing alone and drive higher customer satisfaction metrics as well.   Source: A Forrester Consulting Thought Leadership Paper, Commissioned by IBM, Personalization Demystified: Enchant Your Customers By Going From Good To Great, February 2020.

10 Ways AI And Machine Learning Are Improving Marketing In 2021

CMOs and their teams rely on AI and machine learning to iteratively test and improve every aspect of their marketing campaigns and strategies. Striking the perfect balance between empathy and data-driven results takes a new level of data quality which isn’t possible to achieve using Microsoft Excel or personal productivity tools today. The most popular use of AI and machine learning in organizations is delivering personalization at scale across all digital channels. There’s also increasing adoption of predictive analytics based on machine learning to fine-tune propensity models to improve up-sell and cross-sell results. 

Bibliography

AI can help retailers understand the consumer, Phys.org. January 14, 2019

Brei, Vinicius. (2020). Machine Learning in Marketing: Overview, Learning Strategies, Applications and Future Developments. Foundations and Trends® in Marketing. 14. 173-236. 10.1561/1700000065.

Conick, H. (2017). The past, present and future of AI in marketing. Marketing News, 51(1), 26-35.

Drift and Marketing Artificial Intelligence Institute, 2021 State of Marketing AI Report.

Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30-50.

Jarek, K., & Mazurek, G. (2019). MARKETING AND ARTIFICIAL INTELLIGENCE. Central European Business Review, 8(2).

Libai, B., Bart, Y., Gensler, S., Hofacker, C. F., Kaplan, A., Kötterheinrich, K., & Kroll, E. B. (2020). Brave new world? On AI and the management of customer relationships. Journal of Interactive Marketing51, 44-56.

Ma, L., & Sun, B. (2020). Machine learning and AI in marketing–Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481-504.

McKinsey & Company, A technology blueprint for personalization at scale. May 20, 2019

McKinsey Global Institute, Visualizing the uses and potential impact of AI and other analytics, April 17, 2018, | Interactive   

Microsoft Azure AI Gallery (https://gallery.azure.ai/)

Pedersen, C. L. Empathy‐based marketing. Psychology & Marketing.

Sinha, M., Healey, J., & Sengupta, T. (2020, July). Designing with AI for Digital Marketing. In Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization (pp. 65-70).

State of Marketing, Sixth Edition. Salesforce Research, 2020.

Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021

Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
  • According to Burning Glass Technologies, the two tech job skills paying the highest salary premiums today and in 2021 are IT Automation ($24,969) and AI & Machine Learning ($14,175).
  • The average salary premiums for the most in-demand tech skills range from $4,204 to nearly $25,000.
  • Startups valued at $1 billion or more are 33% more likely to prioritize one or several top ten tech job skills in their new hire plans versus their legacy Fortune 100-based competitors or colleagues.

These and many other fascinating insights are from Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech, Burning Glass Technologies’ latest research study published earlier this month. Their latest study provides pragmatic, useful insights for tech professionals interested in furthering their careers and earning potential. Burning Glass Technologies is a leading job market analytics provider that delivers job market analytics that empowers employers, workers and educators to make data-driven decisions. 

Using AI To Find The Most Valuable Job Skills

Using artificial intelligence-based technologies they’ve developed, Burning Glass Technologies analyzed over 17,000 unique skills demanded across their database of over one billion historical job listings. The study aggregates then define disruptive skill clusters as those skill groups projected to grow the fastest, are most undersupplied and provide the highest value. For additional details regarding their methodology, please see page 8 of the report.

The research study is noteworthy because it explains how essential acquiring skills is to translating new technologies’ benefits into business value. They’ve also taken their analysis a step further, providing technical professionals with additional insights they need to plan their personal development and careers.

Key takeaways from their analysis include the following:

  • IT Automation expertise can earn technical professionals a $24,969 salary premium, the most lucrative of all tech job skills to have in 2021. Burning Glass Technologies defines IT Automation as the skills related to automating and orchestrating digital processes and workflows. Six of the ten job skills are marketable enough to drive technical professionals’ salaries above $10,000 a year. At an average salary uplift of $8,851, proactive security (cybersecurity) job skills’ market value seems low. Future surveys in 2021 will most likely reflect the impact of the SolarWinds breach on demand for this skill set. The following graphic compares the average salary premium by tech job skill area.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  • Software Dev. Methodologies (DevOps) expertise is the most marketable going into 2021, with 634,600 open positions available in North America based on Burning Glass Technologies’ analysis. Employers initiated 1,714,483 job postings requesting at least one disruptive skill area between December 2019 and November 2020. With each skill predicted to grow at least 17%, technical professionals have several lucrative options for their personal and professional development plans. The following graphic compares job openings by skill areas for the time frame of the study:
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  • Quantum Computing, Connected Technologies, Fintech and AI & Machine Learning expertise are predicted to be the fastest-growing tech job skills in 2021 and beyond. Demand for technical professionals skilled in building and optimizing quantum computers and their applications will be in high demand for the next five years based on the study’s findings. Connected Technologies refers to skills related to the Internet of Things and connected physical tools and the telecommunications infrastructure needed to enable them. Fintech skills are related to technologies, including blockchain and others, that make financial transactions more efficient and secure. The following graphic compares the top ten tech job skills predicted to grow the fastest in 2021.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  • AI & Machine Learning, Cloud Technologies, Parallel Computing and Proactive Security (Cybersecurity) are the most distributed across industries, translating into more diverse job opportunities for technical professionals with these skills. Professional Services leads all industries in demand for nine of the ten tech job skills, except Parallel Computing, the most in-demand skill in Manufacturing. Factors contributing to Professional Services leading all industries in demand for technical job skills include the following factors. First, their business models need to continue pivoting fast to stabilize during the pandemic. Second, better risk and compliance controls of remote operations are urgently needed. Third, better visibility into services costs across all systems to ensure financial reporting accuracy is a must-have, according to the CFOs I spoke with regarding the survey results. The following graphic compares demand for tech skills by industry sector.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  • Demand for AI and Machine Learning skills is growing at a 71% compound annual growth rate through 2025, with 197,810 open positions today. Technical professionals with job skills in this area see salary premiums of $14,175. Top positions include Data Scientist, Software Developer, Network Engineer, Network Architect, Data Engineer and Senior Data Scientist.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies
  •  Positions requiring IT Automation job skills are predicted to grow 59% over the next five years and have 282,380 positions open today. Besides being the most lucrative job skillset to have, IT Automation job skills lead to positions including Software Developer, DevOps Engineer, Senior Software Developer, Systems Engineer and Java Developer or Engineer.
Top 10 Tech Job Skills Predicted To Grow The Fastest In 2021
Skills of Mass Disruption: Pinpointing the 10 Most Disruptive Skills in Tech by Burning Glass Technologies

What’s New In Gartner’s Hype Cycle For AI, 2020

What's New In Gartner's Hype Cycle For AI, 2020
AI is starting to deliver on its potential and its benefits for businesses are becoming a reality.

  • 47% of artificial intelligence (AI) investments were unchanged since the start of the pandemic and 30% of organizations plan to increase their AI investments, according to a recent Gartner poll.
  • 30% of CEOs own AI initiatives in their organizations and regularly redefine resources, reporting structures and systems to ensure success.
  • AI projects continue to accelerate this year in healthcare, bioscience, manufacturing, financial services and supply chain sectors despite greater economic & social uncertainty.
  • Five new technology categories are included in this year’s Hype Cycle for AI, including small data, generative AI, composite AI, responsible AI and things as customers.

These and many other new insights are from the Gartner Hype Cycle for Artificial Intelligence, 2020, published on July 27th of this year and provided in the recent article, 2 Megatrends Dominate the Gartner Hype Cycle for Artificial Intelligence, 2020.  Two dominant themes emerge from the combination of 30 diverse AI technologies in this year’s Hype Cycle. The first theme is the democratization or broader adoption of AI across organizations. The greater the democratization of AI, the greater the importance of developers and DevOps to create enterprise-grade applications. The second theme is the industrialization of AI platforms. Reusability, scalability, safety and responsible use of AI and AI governance are the catalysts contributing to the second theme.  The Gartner Hype Cycle for Artificial Intelligence, 2020, is shown below:

What's New In Gartner's Hype Cycle For AI, 2020
Smarter with Gartner, 2 Megatrends Dominate the Gartner Hype Cycle for Artificial Intelligence, 2020.

Details Of What’s New In Gartner’s Hype Cycle for Artificial Intelligence, 2020

  • Chatbots are projected to see over a 100% increase in their adoption rates in the next two to five years and are the leading AI use cases in enterprises today.  Gartner revised the bots’ penetration rate from a range of 5% to 20% last year to 20% to 50% this year. Gartner points to chatbot’s successful adoption as the face of AI today and the technology’s contributions to streamlining automated, touchless customer interactions aimed at keeping customers and employees safe. Bot vendors to watch include Amazon Web Services (AWS), Cognigy, Google, IBM, Microsoft, NTT DOCOMO, Oracle, Rasa and Rulai.
  • GPU Accelerators are the nearest-term technology to mainstream adoption and are predicted to deliver a high level of benefit according to Gartner’s’ Priority Matrix for AI, 2020. Gartner predicts GPU Accelerators will see a 100% improvement in adoption in two to five years, increasing from 5% to 20% adoption last year to 20% to 50% this year. Gartner advises its clients that GPU-accelerated Computing can deliver extreme performance for highly parallel compute-intensive workloads in HPC, DNN training and inferencing. GPU computing is also available as a cloud service. According to the Hype Cycle, it may be economical for applications where utilization is low, but the urgency of completion is high.
  • AI-based minimum viable products and accelerated AI development cycles are replacing pilot projects due to the pandemic across Gartner’s client base. Before the pandemic, pilot projects’ success or failure was, for the most part, dependent on if a project had an executive sponsor and how much influence they had. Gartner clients are wisely moving to minimum viable product and accelerating AI development to get results quickly in the pandemic. Gartner recommends projects involving Natural Language Processing (NLP), machine learning, chatbots and computer vision to be prioritized above other AI initiatives. They’re also recommending organizations look at insight engines’ potential to deliver value across a business.
  • Artificial General Intelligence (AGI) lacks commercial viability today and organizations need to focus instead on more narrowly focused AI use cases to get results for their business. Gartner warns there’s a lot of hype surrounding AGI and organizations would be best to ignore vendors’ claims of having commercial-grade products or platforms ready today with this technology. A better AI deployment strategy is to consider the full scope of technologies on the Hype Cycle and choose those delivering proven financial value to the organizations adopting them.
  • Small Data is now a category in the Hype Cycle for AI for the first time. Gartner defines this technology as a series of techniques that enable organizations to manage production models that are more resilient and adapt to major world events like the pandemic or future disruptions. These techniques are ideal for AI problems where there are no big datasets available.
  • Generative AI is the second new technology category added to this year’s Hype Cycle for the first time. It’s defined as various machine learning (ML) methods that learn a representation of artifacts from the data and generate brand-new, completely original, realistic artifacts that preserve a likeness to the training data, not repeat it.
  • Gartner sees potential for Composite AI helping its enterprise clients and has included it as the third new category in this year’s Hype Cycle. Composite AI refers to the combined application of different AI techniques to improve learning efficiency, increase the level of “common sense,” and ultimately to much more efficiently solve a wider range of business problems.
  • Concentrating on the ethical and social aspects of AI, Gartner recently defined the category Responsible AI as an umbrella term that’s included as the fourth category in the Hype Cycle for AI. Responsible AI is defined as a strategic term that encompasses the many aspects of making the right business and ethical choices when adopting AI that organizations often address independently. These include business and societal value, risk, trust, transparency, fairness, bias mitigation, explainability, accountability, safety, privacy and regulatory compliance.
  • The exponential gains in accuracy, price/performance, low power consumption and Internet of Things sensors that collect AI model data have to lead to a new category called Things as Customers, as the fifth new category this year.  Gartner defines things as Customers as a smart device or machine or that obtains goods or services in exchange for payment. Examples include virtual personal assistants, smart appliances, connected cars and IoT-enabled factory equipment.
  • Thirteen technologies have either been removed, re-classified, or moved to other Hype Cycles compared to last year.  Gartner has chosen to remove VPA-enabled wireless speakers from all Hype Cycles this year. AI developer toolkits are now part of the AI developer and teaching kits category. AI PaaS is now part of AI cloud services. Gartner chose to move AI-related C&SI services, AutoML, Explainable AI (also now part of the Responsible AI category in 2020), graph analytics and Reinforcement Learning to the Hype Cycle for Data Science and Machine Learning, 2020. Conversational User Interfaces, Speech Recognition and Virtual Assistants are now part of the Hype Cycle for Natural Language Technologies, 2020. Gartner has also chosen to move Quantum computing to the Hype Cycle for Compute Infrastructure, 2020. Robotic process automation software is now removed from the Hype Cycle for AI, as Gartner mentions the technology in several other Hype Cycles.