Skip to content

Posts from the ‘AI forecasts’ Category

Gartner 4Q25: $4.71T AI market proves agentic AI and data readiness are the only race that matters

Created with Perplexity

Only 43% of organizations say their data is ready for AI. Meanwhile, AI Data spending is compounding at 155% annually. That’s six times faster than the infrastructure buildouts grabbing headlines. That disconnect defines the enterprise AI landscape in 2025.

Gartner’s 4Q25 AI Spending Forecast (December 17, 2025) projects $4.71 trillion by 2029. But I’ve been digging through the segment data, and the story isn’t the topline number. Four subsegments within Gartner’s AI Data market are growing between 136% and 178% CAGR. AI Infrastructure? Just 29.25%. The money is following the bottlenecks.

“Nearly everything today, from the way we work to how we make decisions, is directly or indirectly influenced by AI,” says Carlie Idoine, VP Analyst at Gartner. “But it doesn’t deliver value on its own. AI needs to be tightly aligned with data, analytics, and governance to enable intelligent, adaptive decisions and actions across the organization.”

McKinsey’s 2025 State of AI survey (1,993 participants, 105 countries) found 88% of organizations now use AI in at least one business function. But two-thirds remain stuck in pilot mode. Just 6% qualify as “AI high performers,” meaning organizations where more than 5% of EBIT comes from AI. The gap between adoption and value creation is where the real spending story unfolds.

Where the bottlenecks are breaking

Every high-growth segment in the forecast eliminates a constraint that stalls production of AI.

Synthetic data generation addresses the labeled data shortage. You can’t train models without it, and real world data comes with privacy constraints, bias problems, and collection costs that don’t scale. Data governance enforces quality standards because ungoverned data produces ungoverned outputs. Hallucinations, compliance violations, and bias incidents trace directly back to data quality failures. Data integration software connects fragmented sources. Most enterprise data sits across dozens of systems that don’t communicate.

“With AI investment remaining strong this year, a sharper emphasis is being placed on using AI for operational scalability and real-time intelligence,” says Haritha Khandabattu, Senior Director Analyst at Gartner. “This has led to a gradual pivot from generative AI as a central focus toward the foundational enablers that support sustainable AI delivery, such as AI-ready data and AI agents.” Infrastructure enables these capabilities. Data readiness and agentic AI determine whether they generate returns.

The $14.6 billion data readiness bet

Gartner tracks AI Data as a unified market with four subsegments. The aggregate grows from $134.35 million in 2024 to $14.59 billion by 2029. That’s 109x, making it the fastest-growing major category in the forecast.

Synthetic Data Generation: 178.29% CAGR, $40.71M to $6.80B. The fastest-growing subsegment adds $6.76 billion in new spending by 2029. A 167x increase from a small 2024 base. Gartner predicts 60% of data and analytics leaders will encounter failures in managing synthetic data by 2027, which explains why governance spending is accelerating in parallel.

AI Data Governance: 163.75% CAGR, $14.82M to $1.89B. Starting from just $14.82 million in 2024, this subsegment grows 128x by 2029. Legal and compliance teams won’t accept the alternative. When AI systems produce ungoverned outputs, the liability exposure is unacceptable.

AI Data Integration Software: 137.13% CAGR, $71.73M to $5.38B. The largest AI Data subsegment by 2029. Connects fragmented data sources, delivering context that transforms generic models into systems that understand specific business operations.

AI Ready Datasets: 136.16% CAGR, $7.09M to $520.45M. These are prepackaged, curated datasets structured for AI and ML workflows. Think labeled image libraries for computer vision, cleaned financial datasets for forecasting, and domain-specific corpora for fine-tuning LLMs. Organizations buy them to skip the months of data collection, cleaning, and annotation that delay projects. Smallest subsegment by revenue, but 73x growth signals enterprises are willing to pay for time to production shortcuts.

The 2027 crossover: When agents overtake chatbots

Agentic AI: 118.73% CAGR, $15.04B to $752.73B. This is the single most dramatic dollar growth in the forecast. Agentic AI expands from $15 billion to $753 billion by 2029. That’s 50x. Nothing else comes close.

Gartner predicts the crossover will happen in 2027. Chatbots peak at $264.75 billion that year, while Agentic AI surges to $371.40 billion. By 2029, Agentic AI is 3.3x larger ($752.73B vs. $228.50B).

McKinsey’s data reinforces the trajectory: 62% of organizations are experimenting with AI agents, 23% report scaling them in at least one function. But scaling remains limited. Most organizations deploying agents are only doing so in one or two functions, primarily IT service desk and knowledge management.

Organizations building chatbot-only strategies should note that the category dominating 2025 and 2026 is projected to decline after 2027.

The Security Tax on Agentic AI

AI Cybersecurity: 73.90% CAGR, $10.82B to $172.01B. AI agents introduce attack surfaces that traditional security architectures weren’t built for. Gartner’s Hype Cycle for Application Security, 2025 (July 2025) projects that through 2029, over 50% of successful attacks against AI agents will exploit access control issues via direct or indirect prompt injection. The 16x growth in AI Cybersecurity spending reflects enterprises grappling with that exposure.

Production AI deployment requires security architectures designed for agentic systems. That’s a capability most organizations don’t have yet.

Infrastructure: Dominant but decelerating

AI Infrastructure remains the largest absolute spending category: $624.76 billion in 2024, growing to $2.25 trillion by 2029. McKinsey (August 2025) projects hyperscalers alone will spend $300 billion in capex over 2025. Their April 2025 analysis projects $5.2 trillion in data center investment by 2030.

But at 29.25% CAGR, infrastructure grows slower than every other major AI market except Services (26.93%). Market share drops from 54.6% of total AI spending in 2024 to 47.8% by 2029. The buildout is real. Differentiation happens elsewhere.

The 6% problem

Only 6% of organizations qualify as AI high performers despite 88% adoption. McKinsey’s analysis shows high performers are 3x more likely to redesign workflows around AI rather than layering it onto existing processes. They’re also 3x more likely to have committed executive leadership driving AI as a strategic priority.

The 155% CAGR for AI Data reflects organizations investing to close that gap. The 2027 chatbot-to-agent crossover marks the inflection point when autonomous capabilities surpass conversational interfaces in market size.

Gareth Herschel, VP Analyst at Gartner, frames the pressure: “D&A is going from the domain of the few to ubiquity. At the same time, D&A leaders are under pressure not to do more with less, but to do a lot more with a lot more, and that can be even more challenging because the stakes are being raised.”

Where the value accrues

Organizations positioned to capture value from this transformation may not be the ones building the biggest data centers. The Gartner data suggests they’re investing in capabilities that make AI systems work at enterprise scale: data readiness, governance, integration, and security.

AI Data Market (aggregate): 155% CAGR, $134M to $14.6B (109x)

  • Synthetic Data Generation: 178% CAGR, $41M to $6.8B (167x)
  • AI Data Governance: 164% CAGR, $15M to $1.9B (128x)
  • AI Data Integration: 137% CAGR, $72M to $5.4B (75x)
  • AI Ready Datasets: 136% CAGR, $7M to $520M (73x)

Other High-Growth Segments:

  • Agentic AI: 119% CAGR, $15B to $753B (50x)
  • AI Cybersecurity: 74% CAGR, $11B to $172B (16x)
  • AI Infrastructure: 29% CAGR, $625B to $2.25T (4x)

Gartner’s 4Q25 data points to a directional shift: AI spending is moving from infrastructure-first to data and capabilities-first architectures. The organizations treating data readiness as an afterthought are the ones most likely to stay stuck in the 94% that never make it past pilot.

Data readiness and security are driving AI’s $4.7 trillion run

Gartner Projects $4.7 Trillion AI Market by 2029 as Security and Data Drive Growth

Gartner’s most comprehensive AI spending forecast reveals the fundamental growth catalysts. AI-ready data predicted to deliver a 155% CAGR. Cybersecurity at 74%. Agentic capabilities crossing 50% of software spend by 2028.

Infrastructure gets the headlines. Hyperscalers are spending over $300 billion on data centers in 2025. McKinsey projects $5.2 trillion in data center investment by 2030. NVIDIA Blackwell deployments are driving 76% growth in accelerated server spending.

Gartner’s newly released Forecast Analysis: AI Spending, 4Q25 (December 17, 2025) tells a different story about where the acceleration is happening. Global AI spending reaches $1.8 trillion in 2025 and $4.7 trillion by 2029 at 33% CAGR. The growth catalysts:

  • AI Data. 155.4% CAGR. Spending increases 7x as enterprises recognize AI-ready data is non-negotiable for scaling.
  • AI Cybersecurity. 73.9% CAGR. From $26 billion to $172 billion. Over 50% of successful AI agent attacks will exploit prompt injection through 2029.
  • AI Models. 67.7% CAGR. Reasoning models underpin 70%+ of agentic AI applications by 2029.
  • AI Software. 47.0% CAGR. Agentic capabilities cross 50% of application software spend by the end of 2028. Non-agentic spending declines starting in 2027.

Infrastructure dominates absolute spending ($965 billion in 2025, growing to $2.25 trillion by 2029). At 29.2% CAGR, it’s the slower-growth segment. The acceleration is in data, security, and agentic capabilities.

The infrastructure buildout in context

The hyperscalers are building at a pace that strains global power grids. Dell’Oro Group’s Q2 2025 analysis shows worldwide data center capex up 43% year-over-year, with accelerated server spending surging 76% on NVIDIA Blackwell deployments. Amazon, Google, Meta, and Microsoft are collectively spending over $300 billion on data center infrastructure in 2025. CreditSights estimates aggregate hyperscaler capex reaches $602 billion in 2026, with approximately 75% earmarked for AI.

Gartner’s forecast aligns with infrastructure volume. AI-optimized server spending jumps 49% in 2026, representing 17% of total AI spending. GPUs account for over 90% of AI-optimized server spending on training throughout the forecast period. Infrastructure is table stakes. The differentiation is elsewhere.

Gartner’s bubble chart mapping 2026 growth rate (X-axis) against 2024-2029 CAGR (Y-axis), with bubble size representing 2025 spending. AI Data sits alone in the upper right quadrant. AI Cybersecurity and AI Models cluster at 70%+ CAGR. AI Infrastructure anchors the center as the dominant bubble. Source: Gartner Forecast Analysis: AI Spending, 4Q25, December 2025.

Gartner’s AI spending forecast by market, 2024-2029

The maturity gap

McKinsey’s 2025 State of AI survey explains why growth rates matter more than absolute spending for most organizations. 88% of organizations now use AI in at least one business function, up from 78% a year ago. Only 6% qualify as “AI high performers”, capturing meaningful enterprise-wide financial impact. Only 1% describe themselves as “mature” in AI deployment. Gartner’s CFO survey found just 11% of finance leaders from organizations implementing AI reported seeing actual financial returns.

The bottleneck is rarely compute. Gartner identifies three categories of readiness: infrastructure, data, and human. For every 100 days of AI implementation, 25 or more days may be consumed solely by change management and workforce resistance. Sharing work tasks with an AI agent, trusting results, and managing handoffs. That’s a fundamental shift in how employees work.

What the growth rates signal

AI cybersecurity’s 73.9% CAGR reflects a threat model shift. Security teams are spending because AI agents introduce attack surfaces that traditional security architectures weren’t designed to address. Gartner projects that over 50% of successful attacks against AI agents will exploit access control issues via prompt injection through 2029. By 2028, over 75% of enterprises will use AI-amplified cybersecurity products for most use cases, up from less than 25% in 2025.

AI data’s 155.4% CAGR signals enterprises are finally investing in foundations. The smallest segment by absolute spending is the fastest-growing because organizations scaling beyond pilots are discovering that AI-ready data isn’t optional. Labeled, annotated, quality-checked. By 2029, 61% of data integration software spend will focus on delivering GenAI-ready data, up from 8% in 2025. Synthetic data becomes dominant. 77% of data used for LLM training will be synthetic by 2029, up from 4% in 2025.

Agentic AI is reshaping software economics. By the end of 2028, software with agentic capabilities crosses 50% of total application software spend, up from 2% in 2024. Starting in 2027, non-agentic software spending declines. Investment in reasoning models underpins 70%+ of agentic AI applications by 2029. Open-source agentic frameworks will power more than 75% of enterprise AI agent deployments by 2028, eroding proprietary platform pricing power.

The inference shift is underway. By 2029, 66% of AI-optimized IaaS spending supports inference, not training. The balance shifts as embedded fine-tuned models become the norm in production applications.

Forecast assumptions by segment

AI Services. By 2029, 50% of all AI projects moving into production will be GenAI-centric, up from 12% in 2025. POC abandonment rates improve from 60% in 2024 to 35% in 2029. Specialized AI services command 20-30% price premiums.

AI Software. From 2027, spending on software without agentic capabilities starts declining. By 2027, one-third of agentic AI implementations will use combinations of agents with different skills for complex tasks.

AI Models. Starting in 2027, the shift toward in-house domain-specific language models constrains new spending in the specialized model market. Open-source model adoption erodes proprietary pricing power through 2029.

AI Platforms. By 2029, over 60% of enterprises will adopt AI agent development platforms to automate complex workflows. By 2030, enterprise application portfolios will include 40% custom applications built using AI-native development platforms, up from 2% in 2025.

AI Infrastructure. Export restrictions keep Chinese ASPs at about 50% of North American levels throughout the forecast. By 2026, NVL72 will become the de facto standard for large clusters. By the end of 2027, all hyperscalers will have reaffirmed Ethernet as their primary networking choice for AI workloads.

Devices. By 2029, more than 99% of PC microprocessors will have integrated on-device AI functionality, up from 15% in 2024. By 2027, efficient small language models will enable advanced GenAI to run locally on smartphones without cloud reliance.

The capital flow

The 2026 Gartner CIO Survey found GenAI and traditional AI among the most common technology areas selected for funding increases. 84% and 81% respectively. Nearly two-thirds of U.S. VC deal value went to AI companies in the first three quarters of 2025.

By 2027, the majority of AI buyers will define business outcomes from project launch. The market matures from technology-first experimentation to outcome-driven deployment. That shift from supply-push to demand-pull separates organizations capturing value from those still running pilots.

The infrastructure buildout continues. The growth signal is clear. Data readiness, security architecture, and agentic capabilities are where the acceleration is happening.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

 

Eighty percent of enterprises have increased their investment in GenAI over the past year, with nearly one-quarter (24%) now integrating the technology into their operations, up from just 6% in the previous year.

Capgemini Research Institute’s recent report, Harnessing the value of generative AI: 2nd edition: Top use cases across sectors, highlights enterprises’ accelerating pace of GenAI adoption and growing importance across their operations and industries.

“Generative AI is not just a technological innovation; it’s a catalyst for transformative change across multiple sectors, driving productivity gains, operational efficiency, and strategic shifts in business models,” write the report’s authors. Enterprise leaders’ sentiment underscores the increasing recognition of GenAI as a critical technology for staying competitive in an increasingly turbulent economic environment.

According to the report, GenAI’s rapid adoption across IT and marketing indicates that companies are actively integrating it into their core operations to drive tangible, measurable benefits. Capgemini’s findings highlight the need for a strong data governance framework, strategic talent development, and vigilant cybersecurity to maximize GenAI’s potential as companies scale their initiatives.

How enterprises are maximizing GenAI’s value

Capgemini found ten key ways enterprises are positioning themselves to maximize GenAI’s potential. These strategies demonstrate how all companies can potentially invest in and integrate GenAI to boost growth, efficiency, and innovation across departments and industries.

Investment surge reflects growing confidence in GenAI. 89% of large businesses with annual revenues over $20 billion are leading this investment surge, highlighting GenAI’s significance for future growth. Additionally, 73% of companies with revenues between $1 billion and $5 billion have significantly increased their GenAI budgets, showing that this trend is not limited to the largest companies. This investment trend indicates that many companies believe GenAI can drive enterprise evolution and deliver substantial returns, with many expecting double-digit productivity and customer engagement growth.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

GenAI maturity grows steadily across industries. GenAI implementations have continued to mature across industry sectors over the past year. Up from 6% in 2023, 18% of organizations will fully integrate GenAI into most or all functions in 2024. With 64% and 53% of companies enabling GenAI, high-tech and financial services lead. Retail grew 17%–40% and industrial manufacturing 14%–35%. With 53% and 47% of telecom and energy/utilities adopting GenAI, respectively, progress has been made.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

GenAI’s integration across organizational functions is growing. In one year, GenAI IT adoption rose from 4% to 27% across organizational functions. GenAI is improving enterprise productivity and innovation through this broad integration across sales, marketing, operations, and R&D. Capgemini also found that GenAI is transforming operations and creating value across all business areas.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

Productivity and customer engagement gains. Over the last year, organizations that have implemented GenAI have reported a 7.8% increase in productivity and a 6.7% increase in customer engagement. These tangible benefits demonstrate GenAI’s ability to provide real, measurable value to enterprises. Early adopters report significant improvements in key performance metrics, highlighting the strategic importance of incorporating GenAI into business operations.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

Small Language Models (SLM) are gaining momentum. 24% of organizations have implemented SLMs, and 56% plan to do so within three years. These models are cheaper and less computationally intensive than larger AI models, so many companies are piloting and eventually moving them into production. SLMs excel in industry-specific applications, allowing businesses to harness AI’s potential without the infrastructure and resource demands of larger models. SLMs are becoming a good option for companies trying to compete in an AI-driven market as they seek efficient and scalable AI solutions.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

GenAI is enabling enterprises to advance from chatbots to autonomous multi-agent systems. GenAI is helping 62% of organizations upgrade from chatbots to AI agents that autonomously manage complex goals. 48% of users use multi-agent systems, where AI agents operate independently in changing environments. As businesses automate and optimize complex processes with these systems, decision-making and operational efficiency improve across industries. AI has evolved from simple user interactions to complex, agentic use cases, as shown in the image.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

GenAI agents are accelerating the shift to autonomous operations. GenAI agents are increasingly used in enterprise automation, with 82% of companies planning to implement them in 1–3 years. These agents are evolving from supportive tools to autonomous entities that can perform complex tasks without interaction. This shift is significant, with 71% of organizations expecting AI agents to automate workflows and 64% expecting customer service and productivity improvements. AI agents are not just efficient; they are a radical shift toward fully autonomous, AI-driven operations that will transform enterprise productivity and strategic decision-making.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

GenAI is forcing major business strategy shifts. 54% of companies expect GenAI to improve their strategies, up from 39% in 2023. 40% of companies are revising their business models to stay competitive as GenAI becomes more important. As GenAI becomes more important, 74% of businesses believe they must use it to grow revenue and stay ahead of the competition.

Capgemini report finds top 10 ways enterprises are harnessing the value of GenAI

Strengthening data foundations is crucial for GenAI’s success. More than 60% of companies realize GenAI’s potential depends on solid data foundations. Only 51% have documented data integration processes and 46% have AI data management policies. Even enterprises that have adopted GenAI still struggle to make the most of all their external data sources. Capgemini makes it clear that for GenAI initiatives to succeed, companies need scalable, secure data infrastructure.

Tighten AI controls or risk trust and compliance. Ethics in AI deployment is a priority for 57% of organizations, which recognize the need for control mechanisms that can flex and adapt as their business goals change. While 46% have clear AI governance frameworks, 73% agree that human oversight is necessary to validate AI-driven decisions. Without strong governance, bias, and accountability issues could counteract GenAI’s benefits, so organizations must act now.

Conclusion

With 80% of organizations increasing their investment and almost a quarter already including it in their operations, GenAI is fast changing how businesses run. This general acceptance emphasizes GenAI’s importance as a main engine of efficiency and creativity, providing real advantages in customer interaction and output.

Organizations are not only embracing GenAI as AI agents and Small Language Models (SLMs) acquire traction; they are also including GenAI in their basic strategies. Those who match GenAI with their business models, make investments in solid data foundations, and develop the knowledge required to maximize its possibilities will inherit the future. They will lead in the era of artificial intelligence by doing this, establishing new benchmarks for operational excellence and creativity.

Gartner Predicts Solid Growth for Information Security, Reaching $287 Billion by 2027

Gartner Predicts Solid Growth for Information Security, Reaching $287 Billion by 2027

Image created in DALL-E

AI continues to become more weaponized with nation-state attackers and cybercrime gangs experimenting with LLMs and gen AI-based attack tradecraft. The age of weaponized LLMs is here.

At the same time, multi-cloud-based infrastructures more businesses rely on are coming under attack. Exfiltrating any identity data available from endpoints and then traversing a network to gain more access by collecting more credential data is often the goal.

Cyberattacks that combine AI and social engineering are just beginning  

Attackers have a version of human-in-the-middle, too, but their goal is to unleash AI’s offensive attack capabilities within social engineering campaigns. Last year’s social engineering-based attacks on MGM, Comcast, Shield Healthcare Group, and others serve as a case in point.

CrowdStrike’s 2024 Global Threat Report finds that cloud intrusions jumped 75% last year. There was a 76% increase in data theft victims named on data leak sites and a 60% increase in interactive intrusion campaigns. Worse, 75% of attacks were malware-free, making them difficult to identify and stop. There was also a 110% YoY increase in cloud-conscious cases.

PwC’s 2024 Digital Trust Insights Report finds that 97% of senior management teams have gaps in their cloud risk management plans. 47% say cloud attacks are their most urgent threat. One in three senior management teams is prioritizing cloud security as their top investment this year.

Gartner sees a more complex threatscape driving growth

Gartner’s Forecast: Information Security and Risk Management, Worldwide, 2021-2027, 4Q23 Update report predicts the information security and risk management market will grow from $185 billion in 2023 to $287 billion in 2027, attaining a compound annual growth rate of 11% in constant currency.

Nation-state attackers are picking up the pace of their stealthy AI arms race. They’re looking to score offensive first victories on an increasingly active digital battlefield. Gartner predicts that in 2027, 17% of the total cyberattacks and data leaks will involve generative AI.

Another key assumption driving Gartner’s latest forecast is that by 2025, user efficiency improvements will drive at least 35% of security vendors to offer large language model (LLM)-driven chat capabilities for users to interact with their applications and data, up from 1% in 2022.

Gartner has also factored in the surge in cloud attacks and the continued growth of hybrid workforces. One of their key assumptions driving the forecast is that “by the end of 2026, the democratization of technology, digitization, and automation of work will increase the total available market of fully remote and hybrid workers to 64% of all employees, up from 52% in 2021.”

Gartner Predicts Solid Growth for Information Security, Reaching $287 Billion by 2027

Source: Gartner, Forecast Analysis: Information Security and Risk Management, Worldwide, Published February 29, 2024

Source: Gartner, Forecast Analysis: Information Security and Risk Management, Worldwide, Published 29 February 2024

Key takeaways from Gartner’s forecast

Market subsegments predicted to see the most significant growth through 2027 include the following:

  • Gartner has high expectations for Zero Trust Network Access (ZTNA) growth, stating the worldwide market was worth $575.7 million in 2021 and predicting it will soar to $3.99 billion in 2027, attaining a 31.6% CAGR in the forecast period.
  • Identity Access Management (IAM) is predicted to grow from $4 billion in 2021 to $11.1 billion in 2027, attaining a 17.6% CAGR. Identity Governance and Administration software is predicted to grow from $2.8 billion in 2021 to $5.77 billion in 2027, attaining a 12.8% CAGR.
  • Endpoint Protection Platforms (EPP) are predicted to grow from $9.8 billion in 2021 to $26.9 billion in 2027, achieving a 17.2% CAGR.
  • Threat Intelligence software is predicted to grow from $1.1 billion in 2021 to $2.79 billion in 2027, growing at a 15.6% CAGR through the forecast period.
  • Cloud Access Security Brokers (CASB) is predicted to grow from $928M in 2021 to $4.75 billion in 2027, attaining a CAGR of 30.2%. Gartner believes that the market share of cloud-native solutions will continue to grow. They are predicting that the combined market for cloud access security brokers (CASBs) and cloud workload protection platforms (CWPPs) will reach $12.8 billion in constant currency by 2027, up from $4.6 billion in 2022. Gartner continues to also see strong demand for cloud-based detection and response solutions that include endpoint detection and response (EDR) and managed detection and response (MDR).

Five Ways AI Can Help Create New Smart Manufacturing Startups

smart manufacturing, AI, machine learning

AI and machine learning’s potential to drive greater visibility, control, and insight across shop floors while monitoring machines and processes in real-time continue to attract venture capital. $62 billion is now invested in 5,396 startups concentrating on the intersection of AI, machine learning, manufacturing, and Industry 4.0, according to Crunchbase.

PwC’s broader tech sector analysis shows a 30% year-over-year growth in funding rounds that reached $293.2 billion in 2021. Smart manufacturing startups are financed by seed rounds at 52%, followed by early-stage venture funding at 33%. The median last funding amount was $1.6 million, with the average being $9.93 million.

 Abundant AI startup opportunities in smart manufacturing and industry 4.0 

According to Gartner, “The underlying concept of Industry 4.0 is to connect embedded systems and smart production facilities to generate a digital convergence between industry, business, and internal functions and processes.” As a result, Industry 4.0 is predicted to grow from $84.59 billion in 2020 to $334.18 billion by 2028. AI and machine learning adoption in manufacturing are growing in five core fields: smart production, products and services improvements, business operations and management, supply chain, and business model decision-making. Deloitte’s survey on AI adoption in manufacturing found that 93% of companies believe AI will be a key technology to drive growth and innovation.

Machine intelligence (MI) is one of the primary catalysts driving increased venture capital investment in smart manufacturing. Startup CEOs and their customers want AI and machine learning models based on actual data, and machine intelligence is helping to make that happen. An article by McKinsey & Company provides valuable insights into market gaps for new ventures. McKinsey’s compelling data point is that those leading companies using MI achieve 3X to 4X the impact of their peers. However, 92% of leaders also have a process to track incomplete or inaccurate data – which is another market gap startups need to fill.

AI, Industry 4, smart manufacturing

McKinsey and the Massachusetts Institute of Technology (MIT) collaborated on a survey to identify machine intelligence leaders’ KPI gains relative to their peers. They found that leaders achieve efficiency, cost, revenue, service, and time-to-market advantages. Source: Toward smart production: Machine intelligence in business operations, McKinsey & Company. February 1, 2022.

Based on the uplift MI creates for new smart manufacturing startup funding and the pervasive need manufacturers have to improve visibility & control across shop floors, startups have many potential opportunities. The following are five that AI and machine learning is helping to create:

  1. AI-enabled Configure, Price, and Quote (CPQ) systems that can factor in supply chain volatility on product costs are needed. Several startups are already using AI and machine learning in CPQ workflows, and they compete with the largest enterprise software providers in the industry, including Salesforce, SAP, Microsoft, and others. However, no one has taken on the challenge of using AI to factor in how supply chain volatility changes standard and actual costs in real-time. For example, knowing the impact of pricing changes based on an allocation, how does that impact standard costs per unit on each order? Right now, an analyst needs to spend time doing that. AI and machine learning could take on that task so analysts could get to the larger, more complex, and costly supply chain problems impacting CPQ close rates and revenue.
  2. Using AI-enabled real-time data capture techniques to identify anomalies in throughput as an indicator of machine health. The aggregated data manufacturing operations produced every day holds clues regarding each machine’s health on the shop floor. Automated data capture can identify scrap rates, yield rates and track actual costs. However, none of them can analyze the slight variations in process flow product outputs to warn of possible machine or supply chain issues. Each process manufacturing machine runs at its cadence or speed, and having an AI-based sensor system track and analyze why speeds are off could save thousands of dollars in maintenance costs and keep the line running. In addition, adding insight and intelligence to the machine’s real-time data feeds frees quality engineers to concentrate on more complex problems.
  3. Industrial Internet of Things (IIoT) and edge computing data can be used for fine-tuning finite scheduling in real-time. Finite scheduling is part of the broader manufacturing systems organizations rely on to optimize shop floor schedules, machinery, and staff scheduling. It can be either manually intensive or automated to provide operators with valuable insights. A potential smart manufacturing opportunity is a finite scheduler that relies on AI and machine learning to keep schedules on track and make trade-offs to ensure resources are used efficiently. Finite schedulers also need greater accuracy in factoring in frequent changes to delivery dates. AI and machine learning could drive greater on-time delivery performance when integrated across all the shop floors a manufacturer relies on.
  4. Automated visual inspections and quality analysis to improve yield rates and reduce scrap. Using visual sensors to capture data in real-time and then analyze them for anomalies is in its nascent stages of deployment and growth. However, this is an area where captured data sets can provide machine learning algorithms with enough accuracy to identify potential quality problems on products before they leave the factory. Convolutional neural networks are an effective machine learning technique for identifying patterns and anomalies in images. They’re perfect for the use case of streamlining visual inspection and in-line quality checks in discrete, batch, and process manufacturing.
  5. Coordinated robotics (Cobots) to handle assemble-to-order product assembly. The latest cobots can be programmed to stay in sync with each other and perform pick, pack, ship, and place materials in warehouses. What’s needed are advanced cobots that can handle simple product assembly at a more competitive cost as manufacturers continue to face chronic labor shortages and often run a shift with less than half the teams they need.

Talent remains an area of need 

Manufacturers’ CEOs and COOs say that recruiting and retaining enough talent to run all the production shifts they need is the most persistent issue. In addition, those manufacturers located in remote regions of the world are turning to robotics to fulfill orders, which opens up opportunities for integrating AI and machine learning to enable cobots to complete assemble-to-order tasks. The unknown impact of how fast supply chain conditions change needs work from startups, too, especially in tracking actual cost performance. These are just a few opportunities for startups looking to apply AI and machine learnings’ innate strengths to solve complex supply chain, manufacturing, quality management, and compliance challenges.

2021 State Of The Machine Learning Market: Enterprise Adoption Is Strong

data science, machine learning, enterprise software, AI, artificial Intelligence
  • 59% of all large enterprises are deploying data science (DS) and machine learning (ML) today.
  • Nearly 50% of all organizations have up to 25 or more ML models in use today.
  • 29% of enterprises are refreshing their data science and machine learning models every day.
  • The higher the data literacy an enterprise can achieve before launching Data Science & Machine Learning initiatives, the higher the probability of success.

These and many other insights defining the state of the data science and machine learning market in 2021 are from Dresner Advisory Services’ 2021 Data Science and Machine Learning Market Study. The 7th annual report is noteworthy for its depth of analysis and insight into how data science and machine learning adoption is growing stronger in enterprises. In addition, the study explains which factors drive adoption and determine the key success factors that matter the most when deploying data science and machine learning techniques. The methodology uses crowdsourcing techniques to recruit respondents from over 6,000 organizations and vendors’ customer communities. As a result, 52% of respondents are from North America and 34% from EMEA, with the balance from Asia-Pacific and Latin America. 

“The perceived importance of data science and machine learning correlates with organizational success with BI, with users that self-report as completely successful with BI almost twice as likely to rate data science as critical,” said Jim Ericson, vice president, and research director at Dresner Advisory. “The perceived level of data literacy also correlates directly and positively with the current or likely future use of data science and machine learning in 2021.” 

Key insights from the study include the following:

  • 59% of large enterprises are deploying data science and machine learning in production today.  Enterprises with 10K employees or more lead all others in adopting and using DS and ML techniques, most often in R&D and Business Intelligence Competency Center (BICC)-related work. Large-scale enterprises often rely on DS and ML to identify how internal processes and workflows can be streamlined and made more cost-efficient. For example, the CEO of a manufacturing company explained on a recent conference call that DS and ML pilots bring much-needed visibility and control across multiple plants and help troubleshoot inventory management and supply chain allocation problems.
machine learning
  • The importance of data science and ML to enterprises has doubled in eight years, jumping from 25% in 2014 to 70% in 2021. The Dresner study notes that a record level of enterprises sees data science and ML as critically important to their business in 2021. Furthermore, 90% of enterprises consider these technologies essential to their operations, rating them critically important or very important. Successful projects in Business Intelligence Competency Centers (BICC) and R&D helped data science and ML gain broad adoption across all organizations. Larger-scale enterprises with over 10K employees are successfully scaling data science and ML to improve visibility, control, and profitability in organizations today.
machine learning
  • Enterprises dominate the recruiting and retention of data science and machine learning talent. Large-scale enterprises with over 10K employees are the most likely to have BI experts and data scientists/statisticians on staff. In addition, large-scale enterprises lead hiring and retention in seven of the nine roles included in the survey. It’s understandable how the Business Intelligence (BI) expertise of professionals in these roles is helping remove the roadblocks to getting more business value from data science and machine learning. Enterprises are learning how to scale data science and ML models to take on problems that were too complex to solve with analytics or BI alone.    
machine learning
  • 80% of DS and ML respondents most want model lifecycle management, model performance monitoring, model version control, and model lineage and history at a minimum. Keeping track of the state of each model, including version control, is a challenge for nearly all organizations adopting ML today. Enterprises reach ML scale when they can manage ML models across their lifecycles using an automated system. The next four most popular features of model rollback, searchable model repository, collaborative, model co-creation tools, and model registration and certification are consistent with the feedback from Data Science teams on what they need most in an ML platform. 
machine learning
  • Financial Services prioritize model lifecycle management and model performance monitoring to achieve greater scale from the tens of thousands of models they’re using today. Consistent with other research that tracks ML adoption by industry, the Dresner study found that Financial Services leads all other industries in their need for the two most valuable features of ML platforms, model lifecycle management and model performance monitoring. Retail and Wholesale are reinventing their business models in real-time to become more virtual while also providing greater real-time visibility across supply chains. ML models in these two industries need automated model version control, model lineage and history, model rollback, collaborative, model co-creation tools, and model registration and certification. In addition, retailers and Wholesalers are doubling down on data science and machine learning to support new digital businesses, improve supply chain performance and increase productivity.
machine learning
  • Enterprises need support for their expanding range of regression models, text analytics functions, and ensemble learning. Over the last seven years, text analytics functions and sentiment analysis’ popularity has continually grown. Martech vendors and the marketing technologists driving the market are increasing sentiment analysis’ practicality and importance. Recommendation engines and geospatial analysis are also experiencing greater adoption due to martech changing the nature of customer- and market-driven analysis and predictive modeling. 
machine learning
  • R, TensorFlow, and PyTorch are considered the three most critical open-source statistical and machine learning frameworks in 2021. Nearly 70% of respondents consider R important to getting work done in data science and ML. The R language has established itself as an industry standard and is well-respected across DevOps, and IT teams in financial services, professional services, consulting, process, and discrete manufacturing. Tensorflow and Pytorch are considered important by the majority of organizations Dresner’s research team interviewed. They’re also among the most in-demand ML frameworks today, with new applicants having experience in all three being recruited actively today.   
machine learning
  • Data literacy predicts DS and ML program success rates. 64% of organizations say they have extremely high literacy rates, implying that DS and ML have reached mainstream adoption thanks partly to BI literacy rates in the past. Enterprises that prioritize data literacy by providing training, certification, and ongoing education increase success odds with ML. A bonus is that employees will have a chance to learn marketable skills they can use in their current and future positions. Investing in training to improve data literacy is a win/win.
machine learning
  • On-database analytics and in-memory analytics (both 91%), and multi-tenant cloud services (88%) are the three most popular technologies enterprises rely on for greater scalability. Dresner’s research team observes that the scalability of data science and machine learning often involves multiple, different requirements to address high data volumes, large numbers of users, data variety while supporting analytic throughput. Apache Spark support continues to grow in enterprises and is the fourth-most relied-on industry support for ML scalability.   
machine learning

2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth

2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth

Demand for TensorFlow expertise is one of the leading indicators of machine learning and AI adoption globally. Kaggle’s State of Data Science and Machine Learning 2020 Survey found that TensorFlow is the second most used machine learning framework today, with 50.5% of respondents currently using it.

TensorFlow expertise continues to be one of the most marketable machine learning and AI skills in 2021, making it a reliable leading indicator of technology adoption. In 2020, there were on average 4,134 LinkedIn open positions that required TensorFlow expertise soaring to 8,414 open LinkedIn positions this year in the U.S. alone. Globally, demand for TensorFlow expertise has doubled from 12,172 open positions in 2020 to 26,958 available jobs on LinkedIn today.  

Demand for machine learning expertise, as reflected in LinkedIn open positions, also shows strong growth. Increasing from 44,864 available jobs in 2020 to 78,372 in 2021 in the U.S. alone, organizations continue to staff up to support new initiatives quickly. Globally, LinkedIn’s open positions requiring machine-learning expertise grew from 98,371 in 2020 to 191,749 in 2021.

Market forecasts and projections also reflect strong growth for AI and machine learning spending globally for the long term. The following are key takeaways from the machine learning market forecasts from the last year include the following:

  • Forrester says the AI market will be defined and grow within four software segments, with AI maker platforms growing the fastest, reaching $13 billion by 2025, helping drive the market to $37 billion by 2025. Forrester is defining the four AI software segments as follows: AI maker platforms for general-purpose AI algorithms and data sets; AI facilitator platforms for specific AI functions like computer vision; AI-centric applications and middleware tools built around AI for specialized tasks like medical diagnosis; and AI-infused applications and middleware tools that differentiate through advanced use of AI in an existing app or tool category.  New AI-centric apps built on AI functions such as medical diagnosis and risk detection solutions will be the second-largest market, valued at nearly $10 billion by 2025. Source: Sizing The AI Software Market: Not As Big As Investors Expect But Still $37 Billion By 2025, December 10, 2020.
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • IDC predicts worldwide revenues for the artificial intelligence (AI) market, including software, hardware, and services, will grow from $327.5 billion in 2021 to $554.3 billion in 2024, attaining a five-year compound annual growth rate (CAGR) of 17.5%. IDC further predicts that the AI Software Platforms market will be the strongest, with a five-year CAGR of 32.7%. The slowest will be AI System Infrastructure Software, with a five-year CAGR of 13.7% while accounting for roughly 36% of AI software revenues. IDC found that among the three technology categories, software represented 88% of the total AI market revenues in 2020. It’s the slowest growing category with a five-year CAGR of 17.3%. AI Applications took the largest share of revenue within the AI software category at 50% in 2020. Source: IDC Forecasts Improved Growth for Global AI Market in 2021, February 23, 2021
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • AI projects continued to accelerate in 2020 in the healthcare, bioscience, manufacturing, financial services, and supply chain sectors despite economic & social uncertainty. Two dominant themes emerge from the combination of 30 diverse AI technologies in this year’s Hype Cycle. The first theme is the democratization or broader adoption of AI across organizations. The greater the democratization of AI, the greater the importance of developers and DevOps to create enterprise-grade applications. The second theme is the industrialization of AI platforms. Reusability, scalability, safety, and responsible use of AI and AI governance are the catalysts contributing to the second theme.  The Gartner Hype Cycle for Artificial Intelligence, 2020, is shown below: Source: Software Strategies Blog, What’s New In Gartner’s Hype Cycle For AI, 2020, October 20, 2020.
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • Capgemini finds that Life Sciences, Retail, Consumer Products, and Automotive industries lead in the percentage of successfully deployed AI use cases today. Life Sciences leads all interviewed industries to AI maturity, with 27% of companies saying they have deployed use cases in production and at scale. Retail is also above the industry average of 13% of companies that have deployed AI in production at scale, with 21% of companies in the industry has adopted AI successfully.  17% of companies in the Consumer Products and Automotive industries now have AI in production, running at scale. Source: Capgemini, Making AI Work For You, (The AI-powered enterprise: Unlocking the potential of AI at scale) 2021
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • Between 2018 and 2020, there’s been a 76% increase in sales professionals using AI-based apps and tools. Salesforce’s latest State of Sales survey found that 57% of high-performance sales organizations use AI today. High-performing sales organizations are 2.8x more likely to use AI than their peers. High-performing sales organizations rely on AI to gain new insights into customer needs, improve forecast accuracy, gain more significant visibility of rep activity, improve competitive analysis, and more. Source: Salesforce Research, 4th Edition, State of Sales, June 2020
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • While 24% of companies are currently using AI for recruitment, that number is expected to grow, with 56% reporting they plan to adopt AI next year. In addition, Sage’s recent survey of 500 senior HR and people leaders finds adoption of AI as an enabling technology for talent management increasing. AI is proving effective for evaluating job candidates for potential, improving virtual recruiting events, and reducing biased language in job descriptions. It’s also proving effective in helping to improve career planning and mobility. Josh Bersin, a noted HR industry analyst, educator, and technologist, recently published an interesting report on this area titled The Rise of the Talent Intelligence Platform. Leaders in the field of Talent Intelligence Platforms include Eightfold.ai. Grounded in Equal Opportunity Algorithms, the Eightfold® Talent Intelligence Platform uses deep-learning AI to help each person understand their career potential, and each enterprise understands the potential of their workforce.Sources: VentureBeat, 8 ways AI is transforming talent management in 2021, March 25, 2021, and Eightfold.ai.
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • 84% of marketers are using AI-based apps and platforms today, up from 28% in 2018. Salesforce Research’s latest State of Marketing survey finds that high-performing marketers use an average of seven different applications or use cases. The familiarity high-performing marketers have with AI is a primary factor in 52% of them predicting they will increase their use of AI-based apps in the future. Source: Salesforce Research, 6th Edition, State of Marketing, June 2020
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • Marketing and Sales lead revenue increases due to AI adoption, yet lag behind other departments on cost savings.  40% of the organizations McKinsey interviewed see between a 6 and 10% increase in revenue from adopting AI in their marketing and sales departments. Adopting Ai to reduce costs delivers the best manufacturing and supply chain management results based on the McKinsey survey results. Revenue increases and cost reductions based on AI adoption are shown in the graphic below. Source: McKinsey & Company, The state of AI in 2020, November 17, 2020
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • AI sees the most significant adoption by marketers working in $500M to $1B companies, with conversational AI for customer service as the most dominant. Businesses with between $500M to $1B lead all other revenue categories in the number and depth of AI adoption cases. Just over 52% of small businesses with sales of $25M or less use AI for predictive analytics for customer insights. It’s interesting to note that small companies are the leaders in AI spending, at 38.1%, to improve marketing ROI by optimizing marketing content and timing. Source: The CMO Survey: Highlights and Insights Report, February 2019. Duke University, Deloitte, and American Marketing Association. (71 pp., PDF, free, no opt-in).
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • Three out of four companies are fast-tracking automation initiatives, including AI.  Bain & Company found that executives would like to use AI to reduce costs and acquire new customers, but they’re uncertain about the ROI and cannot find the talent or solutions they need. Bain research conducted in 2019 found that 90% of tech executives view AI and machine learning as priorities that they should be incorporating into their product lines and businesses. But nearly as many (87%) also said they were not satisfied with their Company’s current approach to AI. Source: Bain & Company, Will the Pandemic Accelerate Adoption of Artificial Intelligence? May 26, 2020
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • Gartner’s Magic Quadrant for Data Science and Machine Learning Platforms predicts a continued glut of exciting innovations and visionary roadmaps from competing vendors. Competitors in the Data Science and Machine Learning (DSML) market focus on innovation and rapid product innovation over pure execution. Gartner said key areas of differentiation include UI, augmented DSML (AutoML), MLOps, performance and scalability, hybrid and multicloud support, XAI, and cutting-edge use cases and techniques (such as deep learning, large-scale IoT, and reinforcement learning). Please see my recent article on VentureBeat, Gartner’s 2021 Magic Quadrant cites ‘glut of innovation’ in data science and ML, March 14, 2021.
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • 76% of enterprises are prioritizing AI & machine Learning In 2021 IT Budgets. Algorithmia’s survey finds that six in ten (64%) organizations say AI and ML initiatives’ priorities have increased relative to other IT priorities in the last twelve months. Algorithmia’s survey from last summer found that enterprises began doubling down on AI & ML spending last year. The pandemic created a new sense of urgency regarding getting AI and ML projects completed, a key point made by CIOs across the financial services and tech sectors last year during interviews for comparable research studies. Source: Algorithmia’s Third Annual Survey, 2021 Enterprise Trends in Machine Learning.
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • Technavio predicts the Artificial Intelligence platforms market will grow to $17.29 billion by 2025, attaining a compound annual growth rate (CAGR) of nearly 35%. The research firm cites the increased levels of AI R&D investments globally combined with accelerating adoption for pilot and proof of concept testing across industries. Technavio predicts Alibaba Group Holding Ltd., Alphabet Inc., and Amazon.com Inc. will emerge as top artificial intelligence platforms vendors by 2025. Source:  Artificial Intelligence Platforms Market to grow by $ 17.29 Billion at 35% CAGR during 2021-2025. June 21, 2021
2021 Roundup Of AI And Machine Learning Market Forecasts Show Strong Growth
  • Tractica predicts the AI software market will reach $126 billion in worldwide revenue by 2025.  The research firm predicts AI will grow fastest in consumer (Internet services), automotive, financial services, telecommunications, and retail industries. As a result, annual global AI software revenue is forecast to grow from $10.1 billion in 2018 to $126.0 billion by 2025. Source: T&D World, AI Software Market to Reach $126.0 Billion in Annual Worldwide Revenue by 2025.

Sources of Market Data on Machine Learning: