Skip to content

Archive for

How To Close The Talent Gap With Machine Learning

  • 80% of the positions open in the U.S. alone were due to attrition. On an average, it costs $5,000 to fill an open position and takes on average of 2 months to find a new employee. Reducing attrition removes a major impediment to any company’s productivity.
  • The average employee’s tenure at a cloud-based enterprise software company is 19 months; in the Silicon Valley this trends to 14 months due to intense competition for talent according to C-level executives.
  • Eightfold.ai can quantify hiring bias and has found it occurs 35% of the time within in-person interviews and 10% during online or virtual interview sessions.
  • Adroll Group launched nurture campaigns leveraging the insights gained using Eightfold.ai for a data scientist open position and attained a 48% open rate, nearly double what they observed from other channels.
  • A leading cloud services provider has seen response rates to recruiting campaigns soar from 20% to 50% using AI-based candidate targeting in the company’s community.

The essence of every company’s revenue growth plan is based on how well they attract, nurture, hire, grow and challenge the best employees they can find. Often relying on manual techniques and systems decades old, companies are struggling to find the right employees to help them grow. Anyone who has hired and managed people can appreciate the upside potential of talent management today.

How AI and Machine Learning Are Revolutionizing Talent Management

Strip away the hype swirling around AI in talent management and what’s left is the urgent, unmet needs companies have for greater contextual intelligence and knowledge about every phase of talent management. Many CEOs are also making greater diversity and inclusion their highest priority. Using advanced AI and machine learning techniques, a company founded by former Google and Facebook AI Scientists is showing potential in meeting these challenges. Founders Ashutosh Garg and Varun Kacholia have over 6000+ research citations and 80+ search and personalization patents. Together they founded Eightfold.ai as Varun says “to help companies find and match the right person to the right role at the right time and, for the first time, personalize the recommendations at scale.” Varun added that “historically, companies have not been able to recognize people’s core capabilities and have unnecessarily exacerbated the talent crisis,” said Varun Kacholia, CTO, and Co-Founder of Eightfold.ai.

What makes Eightfold.ai noteworthy is that it’s the first AI-based Talent Intelligence Platform that combines analysis of publicly available data, internal data repositories, Human Capital Resource Management (HRM) systems, ATS tools and spreadsheets then creates ontologies based on organization-specific success criteria. Each ontology, or area of talent management interest, is customizable for further queries using the app’s easily understood and navigated user interface.

Based on conversations with customers, its clear integration is one of the company’s core strengths. Eightfold.ai relies on an API-based integration strategy to connect with legacy back-end systems. The company averages between 2 to 3 system integrations per customer and supports 20 unique system integrations today with more planned. The following diagram explains how the Eightfold Talent Intelligence Platform is constructed and how it works.

For all the sophisticated analysis, algorithms, system integration connections, and mathematics powering the Eightfold.ai platform, the company’s founders have done an amazing job creating a simple, easily understood user interface. The elegant simplicity of the Eightfold.ai interface reflects the same precision of the AI and machine learning code powering this platform.

I had a chance to speak with Adroll Group and DigitalOcean regarding their experiences using Eightfold.ai. Both said being able to connect the dots between their candidate communities, diversity and inclusion goals, and end-to-end talent management objectives were important goals that the streamlined user experience was helping enable. The following is a drill-down of a candidate profile, showing the depth of external and internal data integration that provides contextual intelligence throughout the Eightfold.ai platform.

Talent Management’s Inflection Point Has Arrived 

Every interaction with a candidate, current associate, and high-potential employee is a learning event for the system.

AI and machine learning make it possible to shift focus away from being transactional and more on building relationships. AdRoll Group and DigitalOcean both mentioned how Eightfold.ai’s advanced analytics and machine learning helps them create and fine-tune nurturing campaigns to keep candidates in high-demand fields aware of opportunities in their companies. AdRoll Group used this technique of concentrating on insights to build relationships with potential Data Scientists and ultimately made a hire assisted by the Eightold.ai platform. DigitalOcean is also active using nurturing campaigns to recruit for their most in-demand positions. “As DigitalOcean continues to experience rapid growth, it’s critical we move fast to secure top talent, while taking time to nurture the phenomenal candidates already in our community,” said Olivia Melman, Manager, Recruiting Operations at DigitalOcean. “Eightfold.ai’s platform helps us improve operational efficiencies so we can quickly engage with high quality candidates and match past applicants to new openings.”

In companies of all sizes, talent management reaches its full potential when accountability and collaboration are aligned to a common set of goals. Business strategies and new business models are created and the specific amount of hires by month and quarter are set. Accountability for results is shared between business and talent management organizations, as is the case at AdRoll Group and DigitalOcean, both of which are making solid contributions to the growth of their businesses. When accountability and collaboration are not aligned, there are unpredictable, less than optimal results.

AI makes it possible to scale personalized responses to specific candidates in a company’s candidate community while defining the ideal candidate for each open position. The company’s founders call this aspect of their platform personalization at scale. “Our platform takes a holistic approach to talent management by meaningfully connecting the dots between the individual and the business. At Eightfold.ai, we are going far beyond keyword and Boolean searches to help companies and employees alike make more fulfilling decisions about ‘what’s next, “ commented Ashutosh Garg, CEO, and Co-Founder of Eightfold.ai.

Every hiring manager knows what excellence looks like in the positions they’re hiring for. Recruiters gather hundreds of resumes and use their best judgment to find close matches to hiring manager needs. Using AI and machine learning, talent management teams save hundreds of hours screening resumes manually and calibrate job requirements to the available candidates in a company’s candidate community. This graphic below shows how the Talent Intelligence Platform (TIP) helps companies calibrate job descriptions. During my test drive, I found that it’s as straightforward as pointing to the profile of ideal candidate and asking TIP to find similar candidates.

Achieving Greater Equality With A Data-Driven Approach To Diversity

Eightfold.ai can quantify hiring bias and has found it occurs 35% of the time within in-person interviews and 10% during online or virtual interview sessions. They’ve also analyzed hiring data and found that women are 11% less like to make it through application reviews, 19% less likely through recruiter screens, 12% through assessments and a shocking 30% from onsite interviews. Conscious and unconscious biases of recruiters and hiring managers often play a more dominant role than a woman’s qualifications in many hiring situations. For the organizations who are enthusiastically endorsing diversity programs yet struggling to make progress, AI and machine learning are helping to accelerate them to the goals they want to accomplish.

AI and machine learning can’t make an impact in this area quickly enough. Imagine the lost brainpower from not having a way to evaluate candidates based on their innate skills and potential to excel in the role and the need for far greater inclusion across the communities companies operate in. AdRoll Group’s CEO is addressing this directly and has made attaining greater diversity and inclusion a top company objective for the year. Daniel Doody, Global Head of Talent at AdRoll Group says “We’re very deliberate in our efforts to uncover and nurture more diverse talent while also identifying individuals who have engaged with our talent brand to include them” he said. Daniel Doody continued, “Eightfold.ai has helped us gain greater precision in our nurturing campaigns designed to bring more diverse talent to Adroll Group globally.”

Kelly O. Kay, Managing Partner, Global Managing Partner, Software & Internet Practice at Heidrick & Struggles agrees. “Eightfold.ai levels the playing field for diversity hiring by using pattern matching based on human behavior, which is fascinating,” Mr. Kay said. He added, “I’m 100% supportive of using AI and machine learning to provide everyone equal footing in pursuing and attaining their career goals.” He added that the Eightfold.ai’s greatest strength is how brilliantly it takes on the challenge of removing unconscious bias from hiring decisions, further ensuring greater diversity in hiring, retention and growth decisions.

Eightfold.ai has a unique approach to presenting potential candidates to recruiters and hiring managers. They can remove any gender-specific identification of a candidate and have them evaluated purely on expertise, experiences, merit, and skills. And the platform also can create gender-neutral job descriptions in seconds too. With these advances in AI and machine learning, long-held biases of tech companies who only want to hire from Cal-Berkeley, Stanford or MIT are being challenged when they see the quality of candidates from just as prestigious Indian, Asian, and European universities as well. Daniel Doody of Adroll Group says the insights gained from the Eightfold.ai platform “are helping to make managers and recruiters more aware of their own hiring biases while at the same time assisting in nurturing potential candidates via less obvious channels.”

How To Close The Talent Gap

Based on conversations with customers, it’s apparent that Eightfold.ai’s Talent Intelligence Platform (TIP) provides enterprises the ability to accelerate time to hire, reduce the cost to hire and increase the quality of hire. Eightfold.ai customers are also seeing how TIP enables their companies to reduce employee attrition, saving on hiring and training costs and minimizing the impact of lost productivity. Today more CEOs and CFOs than ever are making diversity and talent initiatives their highest priority. Based on conversations with Eightfold.ai customers it’s clear their TIP provides the needed insights for C-level executives to reach their goals.

Another aspect of the TIP that customers are just beginning to explore is how to identify employees who are the most likely to leave, and take proactive steps to align their jobs with their aspirations, extending the most valuable employees’ tenure at their companies. At the same time, customers already see good results from using TIP to identify top talent that fits open positions who are likely to join them and put campaigns in place to recruit and hire them before they begin an active job search. Every Eightfold.ai customer spoken with attested to the platform’s ability to help them in their strategic imperatives around talent.

The State Of Cloud Business Intelligence, 2018

  • Cloud BI adoption is soaring in 2018, nearly doubling 2016 adoption levels.
  • Over 90% of Sales & Marketing teams say that Cloud BI is essential for getting their work done in 2018, leading all categories in the survey.
  • 66% of organizations that consider themselves completely successful with Business Intelligence (BI) initiatives currently use the cloud.
  • Financial Services (62%), Technology (54%), and Education (54%) have the highest Cloud BI adoption rates in 2018.
  • 86% of Cloud BI adopters name Amazon AWS as their first choice, 82% name Microsoft Azure, 66% name Google Cloud, and 36% identify IBM Bluemix as their preferred provider of cloud BI services.

These and other many other fascinating insights are from Dresner Advisory Services 2018 Cloud Computing and Business Intelligence Market Study (client access reqd.) of the Wisdom of Crowds® series of research. The goal of the 7th annual edition of the study seeks to quantify end-user deployment trends and attitudes toward cloud computing and business intelligence (BI), defined as the technologies, tools, and solutions that employ one or more cloud deployment models. Dresner Advisory Services defines the scope of Business Intelligence (BI) tools and technologies to include query and reporting, OLAP (online analytical processing), data mining and advanced analytics, end-user tools for ad hoc query and analysis, and dashboards for performance monitoring. Please see page 10 of the study for the methodology. The study found the primary barriers to greater cloud BI adoption are enterprises’ concerns regarding data privacy and security.

Key takeaways from the study include the following:

  • Cloud BI’s importance continues to accelerate in 2018, with the majority of respondents considering it an important element of their broader analytics strategies. The study found that mean level of sentiment rose from 2.68 to 3.22 (above the level of “important”) between 2017 and 2018, indicating the increased importance of Cloud BI over the last year. By region, Asia-Pacific respondents continue to be the strongest proponents of cloud computing regarding both adjusted mean (4.2 or “very important”) and levels of criticality. The following graphic illustrates Cloud BI’s growing importance between 2012 and 2018.

  • Over 90% of Sales & Marketing teams say Cloud BI apps are important to getting their work done in 2018, leading all respondent categories in the survey. The study found that Cloud BI importance in 2018 is highest among Sales/Marketing and Executive Management respondents. One of the key factors driving this is the fact that both Sales & Marketing and Executive Management are increasingly relying on cloud-based front office applications and services that are integrated with and generate cloud-based data to track progress towards goals.

  • Cloud BI is most critical to Financial Services & Insurance, Technology, and Retail & Wholesale Trade industries. The study recorded its highest-ever levels of Cloud Bi importance in 2018. Financial Services has the highest weighted mean interest in cloud BI (3.8, which approaches “very important” status shown in the figure below). Technology organizations, where half of the respondents say cloud BI is “critical” or “very important,” are the next most interested. Close to 90% of Retail/Wholesale respondents say SaaS/cloud BI is at least “important” to them. As it has been over time, Healthcare remains the industry least open to managed services for data and business intelligence.

  • Cloud BI adoption is soaring in 2018, nearly doubling 2016 adoption levels. The study finds that the percentage of respondents using Cloud BI in 2018 nearly doubled from 25% of enterprise users in 2016. Year over year, current use rose from 31% to 49%. In the same time frame, the percentage of respondents with no plans to use cloud BI dropped by half, from 38% to 19%. This study has been completed for the last seven years, showing a steady progression of Cloud BI awareness and adoption, with 2018 being the first one showing the most significant rise in adoption levels ever.

  • Sales & Marketing leads all departments in current use and planning for Cloud BI applications. Business Intelligence Competency Centers (BICC) are a close second, each with over 60% adoption rates for Cloud BI today. Operations including manufacturing and supply chains and services are the next most likely to use Cloud BI currently. Marketing and BICC lead current adoption and are contributing catalysts of Cloud BI’s soaring growth between 2016 and 2018. Both of these departments often have time-constrained and revenue-driven goals where quantifying contributions to company growth and achievement ad critical.

  • Financial Services (62%), Technology (54%), and Education (54%) industries have the highest Cloud BI adoption rates in 2018. The retail/wholesale industry has the fourth-highest level of Cloud BI adoption and the greatest number of companies who are currently evaluating Cloud BI today. The least likely current or future users are found in manufacturing and security-sensitive healthcare organizations, where 45% respondents report no plans for cloud-based BI/analytics.

  • Dashboards, advanced visualization, ad-hoc query, data integration, and self-service are the most-required Cloud BI features in 2018. Sales & Marketing need real-time feedback on key initiatives, programs, strategies, and progress towards goals. Dashboards and advanced visualization features’ dominance of feature requirements reflect this department’s ongoing need for real-time feedback on the progress of their teams towards goals. Reporting, data discovery, and end-user data blending (data preparation) make up the next tier of importance.

  • Manufacturers have the greatest interest in dashboards, ad-hoc query, production reporting, search interface, location intelligence, and ability to write to transactional applications. Education respondents report the greatest interest in advanced visualization along with data integration, data mining, end-user data blending, data catalog, and collaborative support for group-based analysis. Financial Services respondents are highly interested in advanced visualization and lead all industries in self-serviceHealthcare industry respondents lead interest only in in-memory support. Retail/Wholesale and Healthcare industry respondents are the least feature interested overall.

  • Interest in cloud application connections to Salesforce, NetSuite, and other cloud-based platforms has increased 12% this year. Getting end-to-end visibility across supply chains, manufacturing centers, and distribution channels requires Cloud BI apps be integrated with cloud-based platforms and on-premises applications and data. Expect to see this accelerate in 2019 as Cloud BI apps become more pervasive across Marketing & Sales and Executive Management, in addition to Operations including supply chain management and manufacturing where real-time shop floor monitoring is growing rapidly.

  • Retail/Wholesale, Business Services, Education and Financial Services & Insurance industries are most interested in Google Analytics connectors to obtain data for their Cloud BI apps. Respondents from Technology industries prioritize Salesforce integration and connectors above all others. Education respondents are most interested in MySQL and Google Drive integration and connectors. Manufacturers are most interested in connectors to Google AdWords, SurveyMonkey, and The Healthcare industry respondents prioritize SAP Cloud BI services and also interested in ServiceNow connectors.

83% Of Enterprises Are Complacent About Mobile Security

  • 89% of organizations are relying on just a single security strategy to keep their mobile networks safe.
  • 61% report that their spending on mobile security had increased in 2017 with 10% saying it had increased significantly.
  • Just 39% of mobile device users in enterprises change all default passwords, and only 38% use strong two-factor authentication on their mobile devices.
  • Just 31% of companies are using mobile device or enterprise mobility management (MDM or EMM).

These and many other insights are from the recently published Verizon Mobile Security Index 2018 Report. The report is available here for download (22 pp., PDF, no opt-in). Verizon commissioned an independent research company to complete the survey in the second half of 2017, interviewing over 600 professionals involved in procuring and managing mobile devices for their organizations. Please see page 20 of the study for additional details on the methodology.

The study found that the accelerating pace of cloud, Internet of Things (IoT), and mobile adoption is outpacing enterprises’ ability to scale security management, leaving companies vulnerable. When there’s a trade-off between the expediency needed to accomplish business performance goals and security, the business goals win the majority of the time. 32% of enterprises are sacrificing security for expediency and business performance, leaving many areas of their core infrastructure unsecured. Enterprises who made this trade-off of expediency over security were 2.4x as likely to suffer data loss or downtime.

Key takeaways from the study include the following:

  • 79% of enterprises consider their employees to be the most significant security threat. The study points out that it’s not due to losing devices, inadvertent security errors or circumventing security policies. It’s the threat of employees using their secured access for financial or personal gain. 58% of senior management leaders interviewed view employees with secure access as the most significant threat. Security platforms that can stop credential attacks using risk assessment models predicated on behavioral pattern matching and analysis by verifying an employee’s identity are flourishing today. One of the leaders in this field is Centrify, who espouses Zero Trust Security. The following graphic from the study shows the priority of which actors enterprise leaders are most concerned about regarding threats, with employees being the most often mentioned.

  • 32% of enterprises have sacrificed security for expediency and business performance leading to 45% of them suffering data loss or downtime. The study found that companies who sacrificed security were also 2.4x more likely to have experienced data loss or downtime as a result of a mobile-related security incident. For the 68% who prioritized security over expediency, just 19% had suffered data loss or downtime.

  • 89% of enterprises are relying on just a single security practice to keep their mobile networks safe. Verizon’s study found that the majority of enterprises are relying on just one security practice to protect their networks. 55% have two in place, and just 14% have four. Of the four security practices, only 39% change all default passwords. Just under half (47%), encrypt the transmission of sensitive data across open, public networks. The following graphic from the study illustrates the percentage of enterprises who have between 1 and all four security practices in place.

  • Just 49% of enterprises have a policy regarding the use of public WiFi, and even fewer (47%) encrypt the transmission of sensitive data across open, public networks. A startling high 71% of respondents use public Wi-Fi networks for work tasks, despite their companies prohibiting their use. Taking risks with unsecured Wi-Fi networks for expediency and business performance being done at the expense of security supports a key finding of this study. Nearly one in three (32%) of enterprises are sacrificing security for expediency and business performance, including accessing unsecured Wi-Fi networks. The following infographic from the study explains a few of the many security threats inherent in the design and use of public Wi-Fi networks.

 

How Machine Learning Quantifies Trust & Improves Employee Experiences

Bottom Line: By enabling enterprises to scale security with user behavior-based, contextual intelligence, Next-Gen Access strategies are delivering Zero Trust Security (ZTS) enterprise-wide, enabling the fastest companies to keep growing strong.

Every digital business is facing a security paradox today created by their proliferating amount of applications, endpoints and infrastructure on the one hand and the need to scale enterprise security without reducing the quality of user experiences on the other. Businesses face a continual series of challenges to growth, the majority of which are scale-based. Scaling security takes a multidimensional approach that accurately interprets user behavior, risk and threat predictions, and assesses data use and access patterns.

How Enterprises Are Solving The Security Paradox With Next-Gen Access

Security defies simple, scale-based solutions because its processes are ingrained in many different systems across a company. Each of the many systems security relies on and protects have their cadence, speed, and scale. When a company is growing fast, core systems including accounting, CRM, finance, pricing, sales, services, supply chain and human resources become security-constrained. It’s common for companies experiencing high growth to choose expediency over security. 32% of enterprises are sacrificing security for expediency and business performance, leaving many areas of their core infrastructure unsecured according to the Verizon Mobile Security Index 2018 Report.

The hard reality for any growing business is the faster they grow; the more sophisticated and strong they need to become at security. Protecting intellectual property (IP), all data assets and eradicating threats assures uninterrupted, profitable growth. Adding new suppliers, sales teams, distribution partners and service centers can’t be slowed down by legacy-based approaches to user authentication and system access.  The challenge is the faster a business is growing, the slower its legacy approaches to security reacts, slowing down sales cycles, supplier qualifications, and pipelines.

Next-Gen Access solves the security paradox of fast-growing businesses, enabling Zero Trust Security (ZTS) enterprise-wide by solving the following major challenges of a high growth business:

  1. Quit relying on brute-force Multi-Factor Authentication (MFA) techniques that deliver mediocre user experiences and slow down productivity. Any company can still attain Zero Trust Security (ZTS) without reverting to brute-force approaches to MFA. Get away from the idea of having MFA challenges be for every user on every device they use to access every resource. Instead look to Next-Gen Access (NGA) to quantify context, device, and behavioral patterns and derive risk scores for each user.
  2. Begin to rely on Next-Gen Access, Risk-Aware MFA, and Risk Scores to quantify trust and set the foundation of a Zero Trust Security (ZTS) enterprise-wide strategies. The goal is to keep growth going strong, uninterrupted by any security event or breach. Next-Gen Access (NGA) provides behavioral, contextual intelligence indexed as a risk score for each user, enabling more secure and efficient user experiences. NGA is built on a platform that includes Identity-as-a-Service (IDaaS), Enterprise Mobility Management (EMM) and Privileged Access Management (PAM). They are also the essential components for creating and fine-tuning Zero Trust Security (ZTS) across fast-growing businesses. Taken together in a concerted strategy, ZTS delivers greater control and visibility over every resource in a company.
  3. Identify potential security risks on a per-user basis to the device level and limiting access while asking for identity verification without impacting user experiences. NGA takes contextual and user intelligence into account when deciding which resources will be available to a given user based on their previous login and system use actions and behaviors quantified in their risk score. Machine learning algorithms are used to find patterns in user behavior that could signal a potential security risk. Based on the risk score, conditional access is provided or not. All of this is done in seconds and doesn’t impact the user experience.
  4. Rely on more NGA that learns user’s behavioral patterns over time and improves the user experience, scaling Zero Trust Security enterprise-wide. Solving the paradox of scaling security in fast-growing companies needs to start with a machine learning-based approach to finding and acting on user’s behavioral and contextual activity. As NGA “learns” how valid users interact with security, updating risk scores and performing identity verification, the quality of a user’s experience improves. In fast-growing companies adding new employees, partners, and suppliers, this is invaluable as every new user will generate a risk score. Quantifying trust using NGA, the foundation of any ZTS strategy makes fast, secure profitable growth possible.
  5. The era of ZTS has arrived, and it is accentuating the importance of partnering with security providers who excel at offering Next-Gen Access solutions. ZTS will continue to revolutionize every aspect of an organization’s security strategy, enabling digital businesses to grow faster and more securely over time. Next-Gen Access solutions are the foundations enabling enterprises to scale ZTS strategies across their businesses. Key Next-Gen access providers enabling the era of ZTS include Palo Alto Networks for firewalls and Centrify for Access. Over the next 18 months, ZTS will redefine the cybersecurity landscape as digital businesses look to Next-Gen Access solutions to securely scale their companies and grow.

Five Ways Machine Learning Can Save Your Company From A Security Breach Meltdown

  • $86B was spent on security in 2017, yet 66% of companies have still been breached an average of five or more times.
  • Just 55% of CEOs say their organizations have experienced a breach, while 79% of CTOs acknowledge breaches have occurred. One in approximately four CEOs (24%) aren’t aware if their companies have even had a security breach.
  • 62% of CEOs inaccurately cite malware as the primary threat to cybersecurity.
  • 68% of executives whose companies experienced significant breaches in hindsight believe that the breach could have been prevented by implementing more mature identity and access management strategies.

These and many other fascinating findings are from the recently released Centrify and Dow Jones Customer Intelligence study, CEO Disconnect is Weakening Cybersecurity (31 pp, PDF, opt-in).

One of the most valuable findings from the study is how CEOs can reduce the risk of a security breach meltdown by rethinking their core cyber defense strategy by maturing their identity and access management strategies.

However, 62% of CEOs have the impression that multi-factor authentication is difficult to manage. Thus, their primary security concern is primarily driven by how to avoid delivering poor user experiences. In this context, machine learning can assist in strengthening the foundation of a multi-factor authentication platform to increase effectiveness while streamlining user experiences.

Five Ways Machine Learning Saves Companies From Security Breach Meltdowns

Machine learning is solving the security paradox all enterprises face today. Spending millions of dollars on security solutions yet still having breaches occur that are crippling their ability to compete and grow, enterprises need to confront this paradox now. There are many ways machine learning can be used to improve enterprise security. With identity being the primary point of attacks, the following are five ways machine learning can be leveraged in the context of identity and access management to minimize the risk of falling victim to a data breach.

  1. Thwarting compromised credential attacks by using risk-based models that validate user identity based on behavioral pattern matching and analysis. Machine learning excels at using constraint-based and pattern matching algorithms, which makes them ideal for analyzing behavioral patterns of people signing in to systems that hold sensitive information. Compromised credentials are the most common and lethal type of breach. Applying machine learning to this challenge by using a risk-based model that “learns’ behavior over time is stopping security breaches today.
  2. Attaining Zero Trust Security (ZTS) enterprise-wide using risk scoring models that flex to a businesses’ changing requirements. Machine learning enables Zero Trust Security (ZTS) frameworks to scale enterprise-wide, providing threat assessments and graphs that scale across every location. These score models are invaluable in planning and executing growth strategies quickly across broad geographic regions. CEOs need to see multi-factor authentication as a key foundation of ZTS frameworks that can help them grow faster. Machine learning enables IT to accelerate the development of Zero Trust Security (ZTS) frameworks and scale them globally. Removing security-based roadblocks that get in the way of future growth needs to be the highest priority CEOs address. A strong ZTS framework is as much a contributor to revenue as is any distribution or selling channel.
  3. Streamlining security access for new employees by having persona-based risk model profiles that can be quickly customized by IT for specific needs. CEOs most worry about security’s poor user experience and its impacts on productivity. The good news is that the early multi-factor authentication workflows that caused poor user experiences are being redefined with contextual insights and intelligence based on more precise persona-based risk scoring models. As the models “learn” the behaviors of employees regarding access, the level of authentication changes and the experience improves. By learning new behavior patterns over time, machine learning is accelerating how quickly employees can gain access to secured services and systems.
  4. Provide predictive analytics and insights into which are the most probable sources of threats, what their profiles are and what priority to assign to them. CIOs and the security teams they manage need to have enterprise-wide visibility of all potential threats, ideally prioritized by potential severity. Machine learning algorithms are doing this today, providing threat assessments and defining which are the highest priority threats that CIOs and their teams need to address.
  5. Stop malware-based breaches by learning how hackers modify the code bases in an attempt to bypass multi-factor authentication. One of the favorite techniques for hackers to penetrate an enterprise network is to use impersonation-based logins and passwords to pass malware onto corporate servers. Malware breaches can be extremely challenging to track. One approach that is working is when enterprises implement a ZTS framework and create specific scenarios to trap, stop and destroy suspicious malware activity.
%d bloggers like this: